A non-programmers guide to enhancing and making sense of EZ Proxy logs

IF 1.8 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE
S. Murphy
{"title":"A non-programmers guide to enhancing and making sense of EZ Proxy logs","authors":"S. Murphy","doi":"10.1108/pmm-08-2019-0034","DOIUrl":null,"url":null,"abstract":"\nPurpose\nLibraries throughout the world use OCLC’s EZproxy software to manage access to e-resources. When cleaned, processed, visualized and enhanced, these logs paint a valuable picture of a library’s impact on researcher’s lives. The purpose of this paper is to share techniques and procedures for enhancing and de-identifying EZproxy logs using Tableau, a data analytics and visualization software, and Tableau Prep, a tool used for cleaning, combining and shaping data for analysis.\n\n\nDesign/methodology/approach\nIn February 2018, The Ohio State University Libraries established an automated daily process to extract and clean EZproxy log files. The assessment librarian created a series of procedures in Tableau and Tableau Prep to union, parse and enhance these files by adding information such as user major, user status (faculty, graduate or undergraduate) and the title of the requested resource. She last stripped the data set of identifiers and applied best practices for maintaining confidentiality to visualize the data.\n\n\nFindings\nThe data set is currently 1.5m rows and growing. The visualizations may be filtered by date, user status and user department/major where applicable. Safeguards are in place to limit data presentation when filters might reveal a user’s identity.\n\n\nOriginality/value\nTableau used in concert with Tableau Prep allows an assessment librarian to clean and combine data from various sources. Once procedures for cleaning and combining data sources are established, the data driving visualizations can be set to refresh on a set schedule. This expedites the ability of librarians to derive actionable insights from EZproxy data and to share the library’s positive impact on researcher’s lives.\n","PeriodicalId":44583,"journal":{"name":"Performance Measurement and Metrics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/pmm-08-2019-0034","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Measurement and Metrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/pmm-08-2019-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose Libraries throughout the world use OCLC’s EZproxy software to manage access to e-resources. When cleaned, processed, visualized and enhanced, these logs paint a valuable picture of a library’s impact on researcher’s lives. The purpose of this paper is to share techniques and procedures for enhancing and de-identifying EZproxy logs using Tableau, a data analytics and visualization software, and Tableau Prep, a tool used for cleaning, combining and shaping data for analysis. Design/methodology/approach In February 2018, The Ohio State University Libraries established an automated daily process to extract and clean EZproxy log files. The assessment librarian created a series of procedures in Tableau and Tableau Prep to union, parse and enhance these files by adding information such as user major, user status (faculty, graduate or undergraduate) and the title of the requested resource. She last stripped the data set of identifiers and applied best practices for maintaining confidentiality to visualize the data. Findings The data set is currently 1.5m rows and growing. The visualizations may be filtered by date, user status and user department/major where applicable. Safeguards are in place to limit data presentation when filters might reveal a user’s identity. Originality/value Tableau used in concert with Tableau Prep allows an assessment librarian to clean and combine data from various sources. Once procedures for cleaning and combining data sources are established, the data driving visualizations can be set to refresh on a set schedule. This expedites the ability of librarians to derive actionable insights from EZproxy data and to share the library’s positive impact on researcher’s lives.
一个非程序员的增强和理解EZ代理日志的指南
世界各地的图书馆都在使用OCLC的EZproxy软件来管理对电子资源的访问。经过清理、处理、可视化和增强,这些日志描绘了图书馆对研究人员生活影响的宝贵图景。本文的目的是分享使用Tableau(一种数据分析和可视化软件)和Tableau Prep(一种用于清理、组合和塑造数据以供分析的工具)增强和消除EZproxy日志识别的技术和程序。设计/方法/方法2018年2月,俄亥俄州立大学图书馆建立了一个自动化的日常流程来提取和清理EZproxy日志文件。评估馆员在Tableau和Tableau Prep中创建了一系列程序,通过添加用户专业、用户状态(教师、研究生或本科生)和所请求资源的标题等信息,对这些文件进行合并、解析和增强。她最后剥离了标识符的数据集,并应用了维护机密性的最佳实践来可视化数据。数据集目前有150万行,并且还在增长。可视化可以按日期、用户状态和用户部门/专业(如适用)进行过滤。当过滤器可能泄露用户身份时,有适当的保护措施来限制数据的显示。原创性/valueTableau与Tableau Prep一起使用,允许评估图书管理员清理和组合来自各种来源的数据。一旦建立了清理和组合数据源的过程,就可以将数据驱动可视化设置为按照设定的时间表进行刷新。这加快了图书馆员从EZproxy数据中获得可操作见解的能力,并分享图书馆对研究人员生活的积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Performance Measurement and Metrics
Performance Measurement and Metrics INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍: ■Quantitative and qualitative analysis ■Benchmarking ■The measurement and role of information in enhancing organizational effectiveness ■Quality techniques and quality improvement ■Training and education ■Methods for performance measurement and metrics ■Standard assessment tools ■Using emerging technologies ■Setting standards or service quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信