Bootstrap Probability Errors of the Whittle MLE for Linear Regression Processes with Strongly Dependent Disturbances

Mosisa Aga
{"title":"Bootstrap Probability Errors of the Whittle MLE for Linear Regression Processes with Strongly Dependent Disturbances","authors":"Mosisa Aga","doi":"10.5539/ijsp.v12n4p26","DOIUrl":null,"url":null,"abstract":"This paper determines bounds on the asymptotic orders of the coverage probability errors of parametric bootstrap confidence intervals (CIs) and tests for the covariance parameters of a time series generated by a regression model with Gaussian, stationary, and strongly dependent errors. The CIs and tests are based on the plug-in Whittle maximum \nlikelihood (PWML) estimators. It is shown that, under some sets of conditions on the regression coefficients, the spectral density function, and the parameter values, the bounds on the coverage probability errors of symmetric two-sided and one-sided parametric bootstrap confidence intervals on the plug-in Whittle log-likelihood function are shown to be O(n^{-3/2}\\ln{n}) and O(n^{-1}\\ln{n}), respectively. Apart from the \\ln{n} term, the magnitudes of the coverage probability errors of the one-sided bootstrap confidence intervals for our model is shown to be essentially the same as that of the independent and identically distributed (iid) data. The error for the two-sided confidence intervals is not as small as the error O(n^{-2}) that has been established for many confidence intervals in the literature, see Hall (1992), pp 102-108.","PeriodicalId":89781,"journal":{"name":"International journal of statistics and probability","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ijsp.v12n4p26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper determines bounds on the asymptotic orders of the coverage probability errors of parametric bootstrap confidence intervals (CIs) and tests for the covariance parameters of a time series generated by a regression model with Gaussian, stationary, and strongly dependent errors. The CIs and tests are based on the plug-in Whittle maximum likelihood (PWML) estimators. It is shown that, under some sets of conditions on the regression coefficients, the spectral density function, and the parameter values, the bounds on the coverage probability errors of symmetric two-sided and one-sided parametric bootstrap confidence intervals on the plug-in Whittle log-likelihood function are shown to be O(n^{-3/2}\ln{n}) and O(n^{-1}\ln{n}), respectively. Apart from the \ln{n} term, the magnitudes of the coverage probability errors of the one-sided bootstrap confidence intervals for our model is shown to be essentially the same as that of the independent and identically distributed (iid) data. The error for the two-sided confidence intervals is not as small as the error O(n^{-2}) that has been established for many confidence intervals in the literature, see Hall (1992), pp 102-108.
强相关扰动线性回归过程Whittle MLE的Bootstrap概率误差
本文确定了参数自举置信区间(CIs)的覆盖概率误差的渐近阶的界,并检验了由高斯、平稳和强相关误差的回归模型生成的时间序列的协方差参数。ci和测试基于插件Whittle最大似然(PWML)估计器。结果表明,在回归系数、谱密度函数和参数值的某些条件下,对称的双边和单侧参数bootstrap置信区间在插件Whittle对数似然函数上的覆盖概率误差的界分别为O(n^{-3/2}\ln{n})和O(n^{-1}\ln{n})。除了\ln{n}项外,我们的模型的单侧自举置信区间的覆盖概率误差的大小与独立且同分布(iid)数据的大小基本相同。双侧置信区间的误差并不像文献中对许多置信区间建立的误差O(n^{-2})那么小,参见Hall (1992), pp 102-108。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信