On a Linear Functional Mixed Effect Model for Spatial Data

IF 0.1 Q4 STATISTICS & PROBABILITY
R. Nasirzadeh, Jeorge Mateu, A. Soltani
{"title":"On a Linear Functional Mixed Effect Model for Spatial Data","authors":"R. Nasirzadeh, Jeorge Mateu, A. Soltani","doi":"10.29252/JIRSS.18.2.115","DOIUrl":null,"url":null,"abstract":"This paper introduces a functional mixed effect random model to model spatial data. In this model, the spatial locations form the index set, while the contributing effects to the response variable are set as a linear mixture of fixed and random effects. These fixed and random effects are linear combinations of L2 functions and random elements, respectively. However, the corresponding linear factors depend on the spatial location variable. Therefore, we develop estimation procedures to estimate the fixed and random coefficients, using spatial functional principal component analysis. Then, we perform prediction by adapting the functional universal kriging method to our model.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":"18 1","pages":"115-137"},"PeriodicalIF":0.1000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/JIRSS.18.2.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces a functional mixed effect random model to model spatial data. In this model, the spatial locations form the index set, while the contributing effects to the response variable are set as a linear mixture of fixed and random effects. These fixed and random effects are linear combinations of L2 functions and random elements, respectively. However, the corresponding linear factors depend on the spatial location variable. Therefore, we develop estimation procedures to estimate the fixed and random coefficients, using spatial functional principal component analysis. Then, we perform prediction by adapting the functional universal kriging method to our model.
空间数据的线性泛函混合效应模型
本文介绍了一种用于空间数据建模的功能混合效应随机模型。在该模型中,空间位置构成指标集,而对响应变量的贡献效应被设置为固定效应和随机效应的线性混合。这些固定效应和随机效应分别是L2函数和随机元素的线性组合。然而,相应的线性因子依赖于空间位置变量。因此,我们开发了估计程序来估计固定和随机系数,使用空间功能主成分分析。然后,我们采用泛函通用克里格方法对我们的模型进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信