Fault identification and remaining useful life prediction of bearings using Poincare maps, fast Fourier transform and convolutional neural networks

Q4 Engineering
Advait Mulay, A. Majali, Venugopalan Iyengar, Aniruddh N. Nayak, P. Singru
{"title":"Fault identification and remaining useful life prediction of bearings using Poincare maps, fast Fourier transform and convolutional neural networks","authors":"Advait Mulay, A. Majali, Venugopalan Iyengar, Aniruddh N. Nayak, P. Singru","doi":"10.21595/mme.2022.22364","DOIUrl":null,"url":null,"abstract":". Bearings are integral components of rotating machinery and their failure tends to be a catastrophic failure of the machine. Poincare Maps are used to detect bearing failures using the concept of non-linear dynamics. Each time-domain vibration signature array has its own Poincare Map over a period of time. Fast Fourier Transform (FFT) is a method of analysing the frequency plots of a bearing signature. Convolutional Neural Networks (CNN) process the bearing Continuous Wavelet Transform images and provide the Remaining Useful Life (RUL) of the bearing. The Poincare Maps and FFT plots are used to diagnose the type and location of the fault in the bearing, whereas the CNN helps to provide the fraction of Remaining Useful Life. The study concludes that a combination of Poincare Maps, FFT analysis and Convolutional Neural Networks constitutes a robust and precise method of monitoring bearing conditions. condition monitoring, remaining useful life. Convolutional Neural and the remaining useful life This accurate results and suggest they be used in combination for holistic","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/mme.2022.22364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

. Bearings are integral components of rotating machinery and their failure tends to be a catastrophic failure of the machine. Poincare Maps are used to detect bearing failures using the concept of non-linear dynamics. Each time-domain vibration signature array has its own Poincare Map over a period of time. Fast Fourier Transform (FFT) is a method of analysing the frequency plots of a bearing signature. Convolutional Neural Networks (CNN) process the bearing Continuous Wavelet Transform images and provide the Remaining Useful Life (RUL) of the bearing. The Poincare Maps and FFT plots are used to diagnose the type and location of the fault in the bearing, whereas the CNN helps to provide the fraction of Remaining Useful Life. The study concludes that a combination of Poincare Maps, FFT analysis and Convolutional Neural Networks constitutes a robust and precise method of monitoring bearing conditions. condition monitoring, remaining useful life. Convolutional Neural and the remaining useful life This accurate results and suggest they be used in combination for holistic
使用庞加莱图、快速傅立叶变换和卷积神经网络的轴承故障识别和剩余使用寿命预测
轴承是旋转机械的组成部分,其故障往往是机器的灾难性故障。庞加莱映射用于使用非线性动力学的概念来检测轴承故障。每个时域振动特征阵列在一段时间内都有自己的庞加莱映射。快速傅立叶变换(FFT)是一种分析轴承特征频率图的方法。卷积神经网络(CNN)处理轴承的连续小波变换图像,并提供轴承的剩余使用寿命(RUL)。庞加莱映射和FFT图用于诊断轴承中故障的类型和位置,而CNN有助于提供剩余使用寿命的分数。该研究得出结论,庞加莱映射、FFT分析和卷积神经网络的结合构成了一种稳健而精确的轴承状态监测方法。状态监测,剩余使用寿命。卷积神经和剩余使用寿命这一准确的结果并建议将其用于整体
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
8
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信