Removal of Solophenyl Red 3BL Dye from Textile Effluents by Adsorption Using a Natural Adsorbent Oxalis pes-caprae L.

IF 1.6 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Amina Ben Bouabdallah, Fadia Mazari, Roumeissa Sifi
{"title":"Removal of Solophenyl Red 3BL Dye from Textile Effluents by Adsorption Using a Natural Adsorbent Oxalis pes-caprae L.","authors":"Amina Ben Bouabdallah, Fadia Mazari, Roumeissa Sifi","doi":"10.15255/cabeq.2022.2165","DOIUrl":null,"url":null,"abstract":"The aim of the present study was to assess the adsorption potential of a natural adsorbent Oxalis pes-caprae L. for the removal of azo-dye solophenyl red 3BL (SR 3BL) from textile effluents. The adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The effect of various parameters on the efficiency of the adsorption was studied. The optimum was found with the contact time of 35 minutes, pH of 6, and temperature of 25 °C. The equilibrium experimental data were fitted with the Langmuir, Freundlich, and Temkin models. Experimental data were well described with the Langmuir isotherm indicating monolayer adsorption. Pseudo-first-order, pseudo-second-order, and Elovich kinetic models were used to evaluate the adsorption kinetics. The adsorption kinetics was found to follow closely the pseudo-first-order kinetic model. Thermodynamics studies revealed that the adsorption process was spontaneous and exothermic.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2022.2165","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the present study was to assess the adsorption potential of a natural adsorbent Oxalis pes-caprae L. for the removal of azo-dye solophenyl red 3BL (SR 3BL) from textile effluents. The adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The effect of various parameters on the efficiency of the adsorption was studied. The optimum was found with the contact time of 35 minutes, pH of 6, and temperature of 25 °C. The equilibrium experimental data were fitted with the Langmuir, Freundlich, and Temkin models. Experimental data were well described with the Langmuir isotherm indicating monolayer adsorption. Pseudo-first-order, pseudo-second-order, and Elovich kinetic models were used to evaluate the adsorption kinetics. The adsorption kinetics was found to follow closely the pseudo-first-order kinetic model. Thermodynamics studies revealed that the adsorption process was spontaneous and exothermic.
天然吸附剂牛黄吸附去除纺织废水中的Solphenyl Red 3BL染料。
本研究的目的是评估天然吸附剂草叶草(Oxalis pe -caprae L.)对纺织废水中偶氮染料索苯基红3BL (SR 3BL)的吸附潜力。采用傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)对吸附剂进行了表征。研究了各参数对吸附效率的影响。在接触时间为35 min、pH为6、温度为25℃的条件下,获得了最佳效果。平衡实验数据用Langmuir、Freundlich和Temkin模型拟合。实验数据与Langmuir等温线一致,表明单层吸附。采用拟一级、拟二级和Elovich动力学模型对吸附动力学进行了评价。吸附动力学符合准一级动力学模型。热力学研究表明,吸附过程是自发的、放热的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical and Biochemical Engineering Quarterly
Chemical and Biochemical Engineering Quarterly 工程技术-工程:化工
CiteScore
2.70
自引率
6.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required. The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review). The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing. Editor and Editorial board make the final decision about acceptance of a manuscript. Page charges are excluded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信