Fault Detection and Diagnosis of a 3-Phase Induction Motor Using Kohonen Self-Organising Map

R. A. Ofosu, Benjamin Odoi, Daniel Fosu Boateng, A. Muhia
{"title":"Fault Detection and Diagnosis of a 3-Phase Induction Motor Using Kohonen Self-Organising Map","authors":"R. A. Ofosu, Benjamin Odoi, Daniel Fosu Boateng, A. Muhia","doi":"10.25077/jnte.v12n1.1047.2023","DOIUrl":null,"url":null,"abstract":"This paper uses the Kohonen Self-Organising Map (KSOM) to detect, diagnose, and classify induction motor faults. A series of simulations using models of the 3-phase induction motor based on real industrial motor parameters were performed using MATLAB/Simulink under fault conditions such as inter-turn, power frequency variation, over-voltage and unbalance in supply voltage. The model was trained using the input signals of the various fault conditions. Various faults from an unseen induction motor were fed to the model to test the model’s ability to detect and classify induction motor faults. The KSOM adapted to the conditions of the unseen motor, detected, diagnosed and classified these faults with an accuracy of 94.12%.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v12n1.1047.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper uses the Kohonen Self-Organising Map (KSOM) to detect, diagnose, and classify induction motor faults. A series of simulations using models of the 3-phase induction motor based on real industrial motor parameters were performed using MATLAB/Simulink under fault conditions such as inter-turn, power frequency variation, over-voltage and unbalance in supply voltage. The model was trained using the input signals of the various fault conditions. Various faults from an unseen induction motor were fed to the model to test the model’s ability to detect and classify induction motor faults. The KSOM adapted to the conditions of the unseen motor, detected, diagnosed and classified these faults with an accuracy of 94.12%.
基于Kohonen自组织映射的三相异步电动机故障检测与诊断
本文使用Kohonen自组织映射(KSOM)对感应电机故障进行检测、诊断和分类。在匝间、工频变化、过电压和电源电压不平衡等故障条件下,使用MATLAB/Simulink,基于实际工业电机参数,对三相异步电机模型进行了一系列仿真。使用各种故障条件的输入信号对模型进行训练。将来自看不见的感应电机的各种故障输入到模型中,以测试模型检测和分类感应电机故障的能力。KSOM适应了看不见的电机的条件,检测、诊断和分类了这些故障,准确率为94.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信