The dual group of a spherical variety

Q2 Mathematics
F. Knop, B. Schalke
{"title":"The dual group of a spherical variety","authors":"F. Knop, B. Schalke","doi":"10.1090/mosc/270","DOIUrl":null,"url":null,"abstract":"Let $X$ be a spherical variety for a connected reductive group $G$. Work of Gaitsgory-Nadler strongly suggests that the Langlands dual group $G^\\vee$ of $G$ has a subgroup whose Weyl group is the little Weyl group of $X$. Sakellaridis-Venkatesh defined a refined dual group $G^\\vee_X$ and verified in many cases that there exists an isogeny $\\phi$ from $G^\\vee_X$ to $G^\\vee$. In this paper, we establish the existence of $\\phi$ in full generality. Our approach is purely combinatorial and works (despite the title) for arbitrary $G$-varieties.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"78 1","pages":"187-216"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/mosc/270","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mosc/270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 15

Abstract

Let $X$ be a spherical variety for a connected reductive group $G$. Work of Gaitsgory-Nadler strongly suggests that the Langlands dual group $G^\vee$ of $G$ has a subgroup whose Weyl group is the little Weyl group of $X$. Sakellaridis-Venkatesh defined a refined dual group $G^\vee_X$ and verified in many cases that there exists an isogeny $\phi$ from $G^\vee_X$ to $G^\vee$. In this paper, we establish the existence of $\phi$ in full generality. Our approach is purely combinatorial and works (despite the title) for arbitrary $G$-varieties.
球面变种的对偶群
设$X$是连通约化群$G$的球变体。Gaitsgory-Nadler的工作有力地证明了$G$的Langlands对偶群$G^\vee$有一个子群,其Weyl群是$X$的小Weyl群。Sakellaridis-Venkatesh定义了一个精化的对偶群$G^\vee_X$,并在许多情况下证明了从$G^\vee_X$到$G^\vee$之间存在一个同生$\phi$。本文给出了$\phi$的完全一般存在性。我们的方法是纯组合的,并且适用于任意的$G$-变量(尽管标题是这样)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信