Bounds on 2-torsion in class groups of number fields and integral points on elliptic curves

IF 3.5 1区 数学 Q1 MATHEMATICS
M. Bhargava, A. Shankar, Takashi Taniguchi, F. Thorne, Jacob Tsimerman, Yongqiang Zhao
{"title":"Bounds on 2-torsion in class groups of number fields and integral points on elliptic curves","authors":"M. Bhargava, A. Shankar, Takashi Taniguchi, F. Thorne, Jacob Tsimerman, Yongqiang Zhao","doi":"10.1090/jams/945","DOIUrl":null,"url":null,"abstract":"<p>We prove the first known nontrivial bounds on the sizes of the 2-torsion subgroups of the class groups of cubic and higher degree number fields <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (the trivial bound being <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O Subscript epsilon comma n Baseline left-parenthesis StartAbsoluteValue normal upper D normal i normal s normal c left-parenthesis upper K right-parenthesis EndAbsoluteValue Superscript 1 slash 2 plus epsilon Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>O</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">D</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">s</mml:mi>\n <mml:mi mathvariant=\"normal\">c</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>K</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O_{\\epsilon ,n}(|\\mathrm {Disc}(K)|^{1/2+\\epsilon })</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> coming from the bound on the entire class group). This yields corresponding improvements to: (1) bounds of Brumer and Kramer on the sizes of 2-Selmer groups and ranks of elliptic curves, (2) bounds of Helfgott and Venkatesh on the number of integral points on elliptic curves, (3) bounds on the sizes of 2-Selmer groups and ranks of Jacobians of hyperelliptic curves, and (4) bounds of Baily and Wong on the number of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">A_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-quartic fields of bounded discriminant.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/945","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/945","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 60

Abstract

We prove the first known nontrivial bounds on the sizes of the 2-torsion subgroups of the class groups of cubic and higher degree number fields K K (the trivial bound being O ϵ , n ( | D i s c ( K ) | 1 / 2 + ϵ ) O_{\epsilon ,n}(|\mathrm {Disc}(K)|^{1/2+\epsilon }) coming from the bound on the entire class group). This yields corresponding improvements to: (1) bounds of Brumer and Kramer on the sizes of 2-Selmer groups and ranks of elliptic curves, (2) bounds of Helfgott and Venkatesh on the number of integral points on elliptic curves, (3) bounds on the sizes of 2-Selmer groups and ranks of Jacobians of hyperelliptic curves, and (4) bounds of Baily and Wong on the number of A 4 A_4 -quartic fields of bounded discriminant.

椭圆曲线上数域和积分点类群中2-扭转的界
我们证明了三次和高次数域K K的类群的2-扭子群的大小的第一个已知的非平凡界(平凡界是O∈,n(|D i s c(K)|1/2+∈)O_{\epsilon,n}(|\mathrm{Disc}(K)|^{1/2+\epsilon})。这得到了相应的改进:(1)Brumer和Kramer关于2-Selmer群的大小和椭圆曲线的秩的界,(2)Helfgott和Venkatesh关于椭圆曲线上积分点数的界,(4)Baily和Wong关于有界判别式的A4 A_ 4-四次域个数的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信