{"title":"Modelling of the interactions between magnetic nanoparticles in aqueous solutions","authors":"W. Wolak, A. Drzewiński, M. Marć, M. Dudek","doi":"10.17512/jamcm.2022.4.09","DOIUrl":null,"url":null,"abstract":". The ability of magnetic nanoparticles and their aggregates to form larger structures or new materials is primarily based on the interactions between individual particles. The article analyzes the behavior of spherical nanoparticles Fe 3 O 4 placed in an aqueous base solution as a result of their mutual interactions, i.e. repulsive (electrostatic forces) and attractive (van der Waals forces and dipolar magnetic forces) for the full range of parameter values. Considering the application of magnetic aqueous suspensions in industry or environmental research, the presented method allows for a preliminary selection of the parameters of the dispersed material and the solution so as to obtain a suspension with the desired properties.","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/jamcm.2022.4.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
. The ability of magnetic nanoparticles and their aggregates to form larger structures or new materials is primarily based on the interactions between individual particles. The article analyzes the behavior of spherical nanoparticles Fe 3 O 4 placed in an aqueous base solution as a result of their mutual interactions, i.e. repulsive (electrostatic forces) and attractive (van der Waals forces and dipolar magnetic forces) for the full range of parameter values. Considering the application of magnetic aqueous suspensions in industry or environmental research, the presented method allows for a preliminary selection of the parameters of the dispersed material and the solution so as to obtain a suspension with the desired properties.