ANALISIS PERBANDINGAN KINERJA CART KONVENSIONAL, BAGGING DAN RANDOM FOREST PADA KLASIFIKASI OBJEK: HASIL DARI DUA SIMULASI

Yogo Aryo Jatmiko, S. Padmadisastra, Anna Chadidjah
{"title":"ANALISIS PERBANDINGAN KINERJA CART KONVENSIONAL, BAGGING DAN RANDOM FOREST PADA KLASIFIKASI OBJEK: HASIL DARI DUA SIMULASI","authors":"Yogo Aryo Jatmiko, S. Padmadisastra, Anna Chadidjah","doi":"10.14710/MEDSTAT.12.1.1-12","DOIUrl":null,"url":null,"abstract":"The conventional CART method is a nonparametric classification method built on categorical response data. Bagging is one of the popular ensemble methods whereas, Random Forests (RF) is one of the relatively new ensemble methods in the decision tree that is the development of the Bagging method. Unlike Bagging, Random Forest was developed with the idea of adding layers to the random resampling process in Bagging. Therefore, not only randomly sampled sample data to form a classification tree, but also independent variables are randomly selected and newly selected as the best divider when determining the sorting of trees, which is expected to produce more accurate predictions. Based on the above, the authors are interested to study the three methods by comparing the accuracy of classification on binary and non-binary simulation data to understand the effect of the number of sample sizes, the correlation between independent variables, the presence or absence of certain distribution patterns to the accuracy generated classification method. results of the research on simulation data show that the Random Forest ensemble method can improve the accuracy of classification.","PeriodicalId":34146,"journal":{"name":"Media Statistika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.14710/MEDSTAT.12.1.1-12","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Media Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/MEDSTAT.12.1.1-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The conventional CART method is a nonparametric classification method built on categorical response data. Bagging is one of the popular ensemble methods whereas, Random Forests (RF) is one of the relatively new ensemble methods in the decision tree that is the development of the Bagging method. Unlike Bagging, Random Forest was developed with the idea of adding layers to the random resampling process in Bagging. Therefore, not only randomly sampled sample data to form a classification tree, but also independent variables are randomly selected and newly selected as the best divider when determining the sorting of trees, which is expected to produce more accurate predictions. Based on the above, the authors are interested to study the three methods by comparing the accuracy of classification on binary and non-binary simulation data to understand the effect of the number of sample sizes, the correlation between independent variables, the presence or absence of certain distribution patterns to the accuracy generated classification method. results of the research on simulation data show that the Random Forest ensemble method can improve the accuracy of classification.
用对象分类法分析传统卡片机捆扎、套袋和森林随机性:两个模拟中的HASIL
传统的CART方法是一种建立在分类响应数据基础上的非参数分类方法。Bagging是一种流行的集成方法,而随机森林(RF)是决策树中相对较新的集成方法之一,是Bagging方法的发展。与Bagging不同,Random Forest的开发理念是在Bagging中的随机重采样过程中添加层。因此,在确定树的排序时,不仅随机采样样本数据以形成分类树,而且随机选择自变量并新选择自变量作为最佳除法器,有望产生更准确的预测。基于上述,作者有兴趣通过比较二元和非二元模拟数据的分类精度来研究这三种方法,以了解样本量的数量、自变量之间的相关性、是否存在某些分布模式对精度生成的分类方法的影响。对仿真数据的研究结果表明,随机森林集成方法可以提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信