Estimating individualized treatment rules for treatments with hierarchical structure

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Yiwei Fan, Xiaoling Lu, Junlong Zhao, H. Fu, Yufeng Liu
{"title":"Estimating individualized treatment rules for treatments with hierarchical structure","authors":"Yiwei Fan, Xiaoling Lu, Junlong Zhao, H. Fu, Yufeng Liu","doi":"10.1214/21-ejs1948","DOIUrl":null,"url":null,"abstract":"Precision medicine is an increasingly important area of research. Due to the heterogeneity of individual characteristics, patients may respond differently to treatments. One of the most important goals for precision medicine is to develop individualized treatment rules (ITRs) involving patients’ characteristics directly. As an interesting topic in clinical research, many statistical methods have been developed in recent years to find optimal ITRs. For binary treatments, outcome weighted learning (OWL) was proposed to find a decision function of patient characteristics maximizing the expected clinical outcome. Treatments with hierarchical structure are commonly seen in practice. In hierarchical scenarios, how to estimate ITRs is still unclear. We propose a new framework named hierarchical outcome-weighted angle-based learning (HOAL) to estimate ITRs for treatments with hierarchical structure. Statistical properties including Fisher consistency and convergence rates of the proposed method are presented. Simulations and an application to a type 2 diabetes study under linear and nonlinear learning show the highly competitive performance of our proposed procedure in both numerical accuracy and computational efficiency.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-ejs1948","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Precision medicine is an increasingly important area of research. Due to the heterogeneity of individual characteristics, patients may respond differently to treatments. One of the most important goals for precision medicine is to develop individualized treatment rules (ITRs) involving patients’ characteristics directly. As an interesting topic in clinical research, many statistical methods have been developed in recent years to find optimal ITRs. For binary treatments, outcome weighted learning (OWL) was proposed to find a decision function of patient characteristics maximizing the expected clinical outcome. Treatments with hierarchical structure are commonly seen in practice. In hierarchical scenarios, how to estimate ITRs is still unclear. We propose a new framework named hierarchical outcome-weighted angle-based learning (HOAL) to estimate ITRs for treatments with hierarchical structure. Statistical properties including Fisher consistency and convergence rates of the proposed method are presented. Simulations and an application to a type 2 diabetes study under linear and nonlinear learning show the highly competitive performance of our proposed procedure in both numerical accuracy and computational efficiency.
评估具有层次结构的治疗的个性化治疗规则
精准医学是一个越来越重要的研究领域。由于个体特征的异质性,患者对治疗的反应可能不同。精准医学最重要的目标之一是制定直接涉及患者特征的个性化治疗规则。作为临床研究中一个有趣的话题,近年来开发了许多统计方法来寻找最佳ITR。对于二元治疗,提出了结果加权学习(OWL)来寻找患者特征的决策函数,最大化预期的临床结果。分级结构的治疗在实践中很常见。在分层场景中,如何估计ITR仍然不清楚。我们提出了一个新的框架,称为分层结果加权基于角度的学习(HOAL)来估计具有分层结构的治疗的ITRs。给出了该方法的统计性质,包括Fisher一致性和收敛速度。在线性和非线性学习下对2型糖尿病研究的模拟和应用表明,我们提出的程序在数值精度和计算效率方面都具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信