Stochastic zero-sum differential games and backward stochastic differential equations

IF 0.3 Q4 STATISTICS & PROBABILITY
Khalid Oufdil
{"title":"Stochastic zero-sum differential games and backward stochastic differential equations","authors":"Khalid Oufdil","doi":"10.1515/rose-2022-2097","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the stochastic zero-sum differential game in finite horizon in a general case. We first prove that the BSDE associated with a specific generator (the Hamiltonian function for the game) has a unique solution. Then we characterize the value function as that solution to prove the existence of a saddle point for the game. Finally, in the Markovian framework, we show that the value function is the unique viscosity solution for the related partial differential equation.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"31 1","pages":"65 - 86"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2022-2097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we study the stochastic zero-sum differential game in finite horizon in a general case. We first prove that the BSDE associated with a specific generator (the Hamiltonian function for the game) has a unique solution. Then we characterize the value function as that solution to prove the existence of a saddle point for the game. Finally, in the Markovian framework, we show that the value function is the unique viscosity solution for the related partial differential equation.
随机零和微分对策与后向随机微分方程
摘要本文在一个一般情况下研究有限域中的随机零和微分对策。我们首先证明了与特定生成器(博弈的哈密顿函数)相关的BSDE具有唯一的解。然后我们将值函数刻画为证明对策鞍点存在的解。最后,在马尔可夫框架下,我们证明了值函数是相关偏微分方程的唯一粘性解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信