{"title":"Frobenius Objects in the Category of Spans","authors":"Iván A. Contreras, M. Keller, R. Mehta","doi":"10.1142/S0129055X22500362","DOIUrl":null,"url":null,"abstract":"We consider Frobenius objects in the category Span, where the objects are sets and the morphisms are isomorphism classes of spans of sets. We show that such structures are in correspondence with data that can be characterized in terms of simplicial sets. An interesting class of examples comes from groupoids. Our primary motivation is that Span can be viewed as a set-theoretic model for the symplectic category, and thus Frobenius objects in Span provide set-theoretic models for classical topological field theories. The paper includes an explanation of this relationship.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0129055X22500362","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2
Abstract
We consider Frobenius objects in the category Span, where the objects are sets and the morphisms are isomorphism classes of spans of sets. We show that such structures are in correspondence with data that can be characterized in terms of simplicial sets. An interesting class of examples comes from groupoids. Our primary motivation is that Span can be viewed as a set-theoretic model for the symplectic category, and thus Frobenius objects in Span provide set-theoretic models for classical topological field theories. The paper includes an explanation of this relationship.
期刊介绍:
Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.