{"title":"Revisiting Environmental Wind and Moisture Calculations in the Context of Tropical Cyclone Intensification","authors":"Samantha Nebylitsa, S. Majumdar, D. Nolan","doi":"10.1175/waf-d-23-0045.1","DOIUrl":null,"url":null,"abstract":"\nDeep-layer vertical wind shear and mid-tropospheric relative humidity (RH) are explored in and around environments of all intensifying North Atlantic tropical cyclones (TCs) between 1980–2021 using reanalysis data. Shear and RH are averaged within the standard environmental annulus of 200–800-km, along with a 100–600-km annulus, and a 0–250-km radius to represent the inner core and TC itself. Distributions of shear and RH at onset along with a time series of evolution from 48 h prior to and after onset of three different intensification rates: slight (5–10 kt 24 h−1), moderate (15–25 kt 24 h−1), and rapid (≥ 30 kt 24 h−1), are analyzed. RH is also investigated within different shear environments and in shear-relative quadrants around the storm. While low shear and high RH are found to be most favorable for rapid intensification (RI), there is still a significant probability that RI will occur within less favorable environments. RI cases decrease in 850–200-hPa shear in the 24 h leading up to RI, whereas slight intensification cases increase, which is evident in both the standard shear and a shallower layer at 48 h prior to onset. The inner-core RH for RI increases prior to onset whereas it decreases in the environments. RH analysis by shear-relative quadrants demonstrates the importance of moistening in the upshear-right quadrant before onset of RI. Results indicate the potential value of multiple annuli and shear-relative analysis for moisture and a shallower, 925–400-hPa layer for shear in RI forecasting.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0045.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Deep-layer vertical wind shear and mid-tropospheric relative humidity (RH) are explored in and around environments of all intensifying North Atlantic tropical cyclones (TCs) between 1980–2021 using reanalysis data. Shear and RH are averaged within the standard environmental annulus of 200–800-km, along with a 100–600-km annulus, and a 0–250-km radius to represent the inner core and TC itself. Distributions of shear and RH at onset along with a time series of evolution from 48 h prior to and after onset of three different intensification rates: slight (5–10 kt 24 h−1), moderate (15–25 kt 24 h−1), and rapid (≥ 30 kt 24 h−1), are analyzed. RH is also investigated within different shear environments and in shear-relative quadrants around the storm. While low shear and high RH are found to be most favorable for rapid intensification (RI), there is still a significant probability that RI will occur within less favorable environments. RI cases decrease in 850–200-hPa shear in the 24 h leading up to RI, whereas slight intensification cases increase, which is evident in both the standard shear and a shallower layer at 48 h prior to onset. The inner-core RH for RI increases prior to onset whereas it decreases in the environments. RH analysis by shear-relative quadrants demonstrates the importance of moistening in the upshear-right quadrant before onset of RI. Results indicate the potential value of multiple annuli and shear-relative analysis for moisture and a shallower, 925–400-hPa layer for shear in RI forecasting.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.