Fourier transformable measures with weak Meyer set support and their lift to the cut-and-project scheme

Pub Date : 2023-02-17 DOI:10.4153/S0008439523000164
Nicolae Strungaru
{"title":"Fourier transformable measures with weak Meyer set support and their lift to the cut-and-project scheme","authors":"Nicolae Strungaru","doi":"10.4153/S0008439523000164","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we prove that given a cut-and-project scheme \n$(G, H, \\mathcal {L})$\n and a compact window \n$W \\subseteq H$\n , the natural projection gives a bijection between the Fourier transformable measures on \n$G \\times H$\n supported inside the strip \n${\\mathcal L} \\cap (G \\times W)$\n and the Fourier transformable measures on G supported inside \n${\\LARGE \\curlywedge }(W)$\n . We provide a closed formula relating the Fourier transform of the original measure and the Fourier transform of the projection. We show that this formula can be used to re-derive some known results about Fourier analysis of measures with weak Meyer set support.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439523000164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this paper, we prove that given a cut-and-project scheme $(G, H, \mathcal {L})$ and a compact window $W \subseteq H$ , the natural projection gives a bijection between the Fourier transformable measures on $G \times H$ supported inside the strip ${\mathcal L} \cap (G \times W)$ and the Fourier transformable measures on G supported inside ${\LARGE \curlywedge }(W)$ . We provide a closed formula relating the Fourier transform of the original measure and the Fourier transform of the projection. We show that this formula can be used to re-derive some known results about Fourier analysis of measures with weak Meyer set support.
分享
查看原文
弱Meyer集支持的傅里叶变换测度及其对切割-工程方案的提升
摘要本文证明了给定一个切投影方案$(G, H, \mathcal {L})$和一个紧窗$W \子集$ H$,其自然投影给出了支持在条形${\mathcal L} \cap (G \times W)$内的$G \ × H$上的傅里叶变换测度与支持在${\LARGE \curlywedge}(W)$内的G上的傅里叶变换测度之间的双射。我们提供了一个关于原始测度的傅里叶变换和投影的傅里叶变换的封闭公式。我们证明了这个公式可以用来重新推导一些已知的关于弱Meyer集支持测度的傅里叶分析的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信