Ionic-additive Crosslinked Polymeric Sulfur Composites as Cathode Materials for Lithium-Sulfur Batteries

IF 2.2 4区 工程技术 Q3 ELECTROCHEMISTRY
M. Seong, S. Manivannan, Kyuwon Kim, Taeeun Yim
{"title":"Ionic-additive Crosslinked Polymeric Sulfur Composites as Cathode Materials for Lithium-Sulfur Batteries","authors":"M. Seong, S. Manivannan, Kyuwon Kim, Taeeun Yim","doi":"10.33961/JECST.2021.00493","DOIUrl":null,"url":null,"abstract":"Lithium-sulfur (Li-S) batteries are one of attractive energy conversion and storage system based on high theoretical specific capacity and energy density with low costs. However, volatile nature of elemental sulfur is one of critical problem for their practical acceptance in industry because it considerably affects electrode uniformity during electrode manufacturing. In this work, polymeric sulfur composite consisting of ionic liquid (IL) are suggested to reduce volatility nature of elemental sulfur, resulting in better processibility of the Li-S cell. According to systematic spectroscopic analysis, it is found that polymeric sulfur is consisting of repeating units combining with elemental sulfur and volatility of them is negligible even at high temperature. In addition, the IL-embedded polymeric sulfur shows moderate cycle performance compared to the cell with elemental sulfur. From these results, it is found that the IL-embedded polymeric sulfur composite is applicable cathode candidate for the Li-S cell based on their excellent non-volatility as well as their superior electrochemical performance.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrochemical science and technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33961/JECST.2021.00493","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

Abstract

Lithium-sulfur (Li-S) batteries are one of attractive energy conversion and storage system based on high theoretical specific capacity and energy density with low costs. However, volatile nature of elemental sulfur is one of critical problem for their practical acceptance in industry because it considerably affects electrode uniformity during electrode manufacturing. In this work, polymeric sulfur composite consisting of ionic liquid (IL) are suggested to reduce volatility nature of elemental sulfur, resulting in better processibility of the Li-S cell. According to systematic spectroscopic analysis, it is found that polymeric sulfur is consisting of repeating units combining with elemental sulfur and volatility of them is negligible even at high temperature. In addition, the IL-embedded polymeric sulfur shows moderate cycle performance compared to the cell with elemental sulfur. From these results, it is found that the IL-embedded polymeric sulfur composite is applicable cathode candidate for the Li-S cell based on their excellent non-volatility as well as their superior electrochemical performance.
离子添加剂交联聚合硫复合材料作为锂硫电池正极材料
锂硫(Li-S)电池是一种基于高理论比容量和低成本的能量转换和存储系统。然而,元素硫的挥发性是其在工业中实际接受的关键问题之一,因为它在电极制造过程中会显著影响电极的均匀性。在这项工作中,提出了由离子液体(IL)组成的聚合物硫复合材料,以降低元素硫的挥发性,从而提高锂硫电池的可加工性。根据系统的光谱分析,发现聚合物硫由与元素硫结合的重复单元组成,即使在高温下,它们的挥发性也可以忽略不计。此外,与具有元素硫的电池相比,嵌入IL的聚合物硫显示出中等的循环性能。从这些结果中发现,基于其优异的非挥发性和优异的电化学性能,嵌入IL的聚合物硫复合材料是适用于Li-S电池的候选阴极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
8.10%
发文量
44
期刊介绍: Covering fields: - Batteries and Energy Storage - Biological Electrochemistry - Corrosion Science and Technology - Electroanalytical Chemistry and Sensor Technology - Electrocatalysis - Electrochemical Capacitors & Supercapcitors - Electrochemical Engineering - Electrodeposition and Surface Treatment - Environmental Science and Technology - Fuel Cells - Material Electrochemistry - Molecular Electrochemistry and Organic Electrochemistry - Physical Electrochemistry - Solar Energy Conversion and Photoelectrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信