Performance Analysis of Compressive Sensing based LS and MMSE Channel Estimation Algorithm

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
A. Munshi, S. Unnikrishnan
{"title":"Performance Analysis of Compressive Sensing based LS and MMSE Channel Estimation Algorithm","authors":"A. Munshi, S. Unnikrishnan","doi":"10.24138/JCOMSS.V17I1.1084","DOIUrl":null,"url":null,"abstract":"In this paper, the optimality of Compressive Sensing based Least Square (LS-CS) and Compressive Sensing based Minimum Mean Square (MMSE-CS) channel estimation algorithms in Multi Input Multi Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) system is investigated for a sparse communication channel. The performance of LS, MMSE, LS-CS and MMSE-CS channel estimation algorithms in terms of sparsity of the channel, compressive sensing and mathematical complexity is investigated and analyzed so that optimum ranges can be recommended.","PeriodicalId":38910,"journal":{"name":"Journal of Communications Software and Systems","volume":"17 1","pages":"13-19"},"PeriodicalIF":0.6000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications Software and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24138/JCOMSS.V17I1.1084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, the optimality of Compressive Sensing based Least Square (LS-CS) and Compressive Sensing based Minimum Mean Square (MMSE-CS) channel estimation algorithms in Multi Input Multi Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) system is investigated for a sparse communication channel. The performance of LS, MMSE, LS-CS and MMSE-CS channel estimation algorithms in terms of sparsity of the channel, compressive sensing and mathematical complexity is investigated and analyzed so that optimum ranges can be recommended.
基于压缩感知的LS和MMSE信道估计算法性能分析
针对稀疏通信信道,研究了多输入多输出(MIMO)正交频分复用(OFDM)系统中基于压缩感知的最小二乘(LS-CS)和基于压缩感知的最小均方(MMSE-CS)信道估计算法的最优性。对LS、MMSE、LS- cs和MMSE- cs信道估计算法在信道稀疏度、压缩感知和数学复杂度方面的性能进行了研究和分析,从而提出了最佳范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Communications Software and Systems
Journal of Communications Software and Systems Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
14.30%
发文量
28
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信