Linear Rescaling to Accurately Interpret Logarithms

Q3 Mathematics
Nick Huntington-Klein
{"title":"Linear Rescaling to Accurately Interpret Logarithms","authors":"Nick Huntington-Klein","doi":"10.1515/jem-2021-0029","DOIUrl":null,"url":null,"abstract":"Abstract The standard approximation of a natural logarithm in statistical analysis interprets a linear change of p in ln(X) as a (1 + p) proportional change in X, which is only accurate for small values of p. I suggest base-(1 + p) logarithms, where p is chosen ahead of time. A one-unit change in log1 + p(X) is exactly equivalent to a (1 + p) proportional change in X. This avoids an approximation applied too broadly, makes exact interpretation easier and less error-prone, improves approximation quality when approximations are used, makes the change of interest a one-log-unit change like other regression variables, and reduces error from the use of log(1 + X).","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"12 1","pages":"139 - 147"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2021-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The standard approximation of a natural logarithm in statistical analysis interprets a linear change of p in ln(X) as a (1 + p) proportional change in X, which is only accurate for small values of p. I suggest base-(1 + p) logarithms, where p is chosen ahead of time. A one-unit change in log1 + p(X) is exactly equivalent to a (1 + p) proportional change in X. This avoids an approximation applied too broadly, makes exact interpretation easier and less error-prone, improves approximation quality when approximations are used, makes the change of interest a one-log-unit change like other regression variables, and reduces error from the use of log(1 + X).
线性缩放以准确地解释对数
摘要统计分析中自然对数的标准近似将ln(X)中p的线性变化解释为X中的(1+p)比例变化,这只适用于p的小值。log1+p(X)的一个单位变化恰好等于X的(1+p)比例变化。这避免了近似应用过于广泛,使精确解释更容易且不易出错,在使用近似时提高了近似质量,使感兴趣的变化像其他回归变量一样成为一个对数单位变化,并减少了使用log(1+X)产生的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信