{"title":"Linear Rescaling to Accurately Interpret Logarithms","authors":"Nick Huntington-Klein","doi":"10.1515/jem-2021-0029","DOIUrl":null,"url":null,"abstract":"Abstract The standard approximation of a natural logarithm in statistical analysis interprets a linear change of p in ln(X) as a (1 + p) proportional change in X, which is only accurate for small values of p. I suggest base-(1 + p) logarithms, where p is chosen ahead of time. A one-unit change in log1 + p(X) is exactly equivalent to a (1 + p) proportional change in X. This avoids an approximation applied too broadly, makes exact interpretation easier and less error-prone, improves approximation quality when approximations are used, makes the change of interest a one-log-unit change like other regression variables, and reduces error from the use of log(1 + X).","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"12 1","pages":"139 - 147"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2021-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The standard approximation of a natural logarithm in statistical analysis interprets a linear change of p in ln(X) as a (1 + p) proportional change in X, which is only accurate for small values of p. I suggest base-(1 + p) logarithms, where p is chosen ahead of time. A one-unit change in log1 + p(X) is exactly equivalent to a (1 + p) proportional change in X. This avoids an approximation applied too broadly, makes exact interpretation easier and less error-prone, improves approximation quality when approximations are used, makes the change of interest a one-log-unit change like other regression variables, and reduces error from the use of log(1 + X).