{"title":"A Perception-Augmented Hidden Markov Model for Parent-Child Relations in Families of Youth with Type 1 Diabetes.","authors":"Ruijin Lu, Tonja R Nansel, Zhen Chen","doi":"10.1007/s12561-022-09360-8","DOIUrl":null,"url":null,"abstract":"<p><p>In youth with Type 1 diabetes, adherence to medical treatment regimens requires the involvement of both parent and child. A clinic-integrated behavioral intervention in the Family Management of Diabetes (FMOD) trial was shown to be effective in controlling deterioration in glycemic level; yet the mechanism remains unknown. It is possible that the effectiveness is through improved Parent-Child relation. To investigate whether the intervention improves Parent-Child relations, we proposed a novel approach that allows differential perceptions of parent and child toward the unobserved Parent-Child relationship. Leveraging manifesto data collected from both parent and child in the FMOD trial, the proposed approach extended a standard hidden Markov model by inserting a layer of parent- and child-specific hidden states. We took a Bayesian perspective to estimation and developed an efficient computational algorithm to sample from the joint posterior distribution. Extensive simulations were conducted to demonstrate the performance of the proposed modeling framework. Application to the FMOD trial data reveals that families in the intervention arm are more likely to stay in the Harmonious Parent-Child relation state and less likely to transition from Harmonious to Indifferent state. Compared to parent, child tends to have a more heterogeneous perception of the Parent-Child relation.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"15 1","pages":"288-308"},"PeriodicalIF":0.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-022-09360-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In youth with Type 1 diabetes, adherence to medical treatment regimens requires the involvement of both parent and child. A clinic-integrated behavioral intervention in the Family Management of Diabetes (FMOD) trial was shown to be effective in controlling deterioration in glycemic level; yet the mechanism remains unknown. It is possible that the effectiveness is through improved Parent-Child relation. To investigate whether the intervention improves Parent-Child relations, we proposed a novel approach that allows differential perceptions of parent and child toward the unobserved Parent-Child relationship. Leveraging manifesto data collected from both parent and child in the FMOD trial, the proposed approach extended a standard hidden Markov model by inserting a layer of parent- and child-specific hidden states. We took a Bayesian perspective to estimation and developed an efficient computational algorithm to sample from the joint posterior distribution. Extensive simulations were conducted to demonstrate the performance of the proposed modeling framework. Application to the FMOD trial data reveals that families in the intervention arm are more likely to stay in the Harmonious Parent-Child relation state and less likely to transition from Harmonious to Indifferent state. Compared to parent, child tends to have a more heterogeneous perception of the Parent-Child relation.
期刊介绍:
Statistics in Biosciences (SIBS) is published three times a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science.
SIBS publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIBS share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.