Proof the Skewes’ number is not an integer using lattice points and tangent line

IF 0.3 Q4 MATHEMATICS, APPLIED
V. Ďuriš, T. Šumný, T. Lengyelfalusy
{"title":"Proof the Skewes’ number is not an integer using lattice points and tangent line","authors":"V. Ďuriš, T. Šumný, T. Lengyelfalusy","doi":"10.2478/jamsi-2021-0006","DOIUrl":null,"url":null,"abstract":"Abstract Skewes’ number was discovered in 1933 by South African mathematician Stanley Skewes as upper bound for the first sign change of the difference π (x) − li(x). Whether a Skewes’ number is an integer is an open problem of Number Theory. Assuming Schanuel’s conjecture, it can be shown that Skewes’ number is transcendental. In our paper we have chosen a different approach to prove Skewes’ number is an integer, using lattice points and tangent line. In the paper we acquaint the reader also with prime numbers and their use in RSA coding, we present the primary algorithms Lehmann test and Rabin-Miller test for determining the prime numbers, we introduce the Prime Number Theorem and define the prime-counting function and logarithmic integral function and show their relation.","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":"17 1","pages":"5 - 18"},"PeriodicalIF":0.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jamsi-2021-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Skewes’ number was discovered in 1933 by South African mathematician Stanley Skewes as upper bound for the first sign change of the difference π (x) − li(x). Whether a Skewes’ number is an integer is an open problem of Number Theory. Assuming Schanuel’s conjecture, it can be shown that Skewes’ number is transcendental. In our paper we have chosen a different approach to prove Skewes’ number is an integer, using lattice points and tangent line. In the paper we acquaint the reader also with prime numbers and their use in RSA coding, we present the primary algorithms Lehmann test and Rabin-Miller test for determining the prime numbers, we introduce the Prime Number Theorem and define the prime-counting function and logarithmic integral function and show their relation.
用格点和切线证明Skewes数不是整数
Skewes数是南非数学家Stanley Skewes在1933年发现的,它是差值π (x) - li(x)第一个符号变化的上界。Skewes数是否为整数是数论中的一个开放问题。假设Schanuel猜想,可以证明Skewes数是超越的。在我们的论文中,我们选择了一种不同的方法来证明Skewes的数是一个整数,使用格点和切线。本文还介绍了素数及其在RSA编码中的应用,给出了确定素数的主要算法Lehmann检验和Rabin-Miller检验,介绍了素数定理,定义了素数计数函数和对数积分函数,并说明了它们之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信