{"title":"Numerical Investigation of Film Coefficient Approximation for Chemically Reacting Boundary-Layer Flows","authors":"J. Cooper, Giovanni Salazar, Alexandre Martin","doi":"10.2514/1.t6707","DOIUrl":null,"url":null,"abstract":"Aerothermal analysis of spacecraft planetary entry is heavily dependent on heritage engineering models. The film coefficient heat transfer model examined in this paper estimates the convective heating to the vehicle for a laminar, dissociated, chemically reacting boundary layer for an Earth atmosphere. This model requires information about the vehicle and flowfield for a given trajectory point and estimates a proportional relationship between enthalpy potential and convective heat flux. In practice it is the aerothermal engineer who must decide which assumptions are appropriate for his/her application. This work looks at numerous CFD simulations for an arbitrary, axisymmetric flight vehicle to analyze the relative importance of both the mass and energy constraints imposed at the wall boundary, as well as the effect of various diffusion models. Within the subset of tested energy boundary conditions, it is found that the most desirable energy boundary condition is the radiative equilibrium boundary condition, which permits conservative estimates of convective heat flux, but also generates flowfield-dependent spatial thermal distributions along the surface. Other key findings are presented in an effort to make the film coefficient engineering model readily available to design engineers across industry.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6707","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Aerothermal analysis of spacecraft planetary entry is heavily dependent on heritage engineering models. The film coefficient heat transfer model examined in this paper estimates the convective heating to the vehicle for a laminar, dissociated, chemically reacting boundary layer for an Earth atmosphere. This model requires information about the vehicle and flowfield for a given trajectory point and estimates a proportional relationship between enthalpy potential and convective heat flux. In practice it is the aerothermal engineer who must decide which assumptions are appropriate for his/her application. This work looks at numerous CFD simulations for an arbitrary, axisymmetric flight vehicle to analyze the relative importance of both the mass and energy constraints imposed at the wall boundary, as well as the effect of various diffusion models. Within the subset of tested energy boundary conditions, it is found that the most desirable energy boundary condition is the radiative equilibrium boundary condition, which permits conservative estimates of convective heat flux, but also generates flowfield-dependent spatial thermal distributions along the surface. Other key findings are presented in an effort to make the film coefficient engineering model readily available to design engineers across industry.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.