Construction of a one-dimensional set which asymptotically and omnidirectionally contains arithmetic progressions

IF 1.1 4区 数学 Q1 MATHEMATICS
Kota Saito
{"title":"Construction of a one-dimensional set which asymptotically and omnidirectionally contains arithmetic progressions","authors":"Kota Saito","doi":"10.4171/jfg/90","DOIUrl":null,"url":null,"abstract":"In this paper, we construct a subset of $\\mathbb{R}^d$ which asymptotically and omnidirectionally contains arithmetic progressions but has Assouad dimension 1. More precisely, we say that $F$ asymptotically and omnidirectionally contains arithmetic progressions if we can find an arithmetic progression of length $k$ and gap length $\\Delta>0$ with direction $e\\in S^{d-1}$ inside the $\\epsilon \\Delta$ neighbourhood of $F$ for all $\\epsilon>0$, $k\\geq 3$ and $e\\in S^{d-1}$. Moreover, the dimension of our constructed example is the lowest-possible because we prove that a subset of $\\mathbb{R}^d$ which asymptotically and omnidirectionally contains arithmetic progressions must have Assouad dimension greater than or equal to 1. We also get the same results for arithmetic patches, which are the higher dimensional extension of arithmetic progressions.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/90","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we construct a subset of $\mathbb{R}^d$ which asymptotically and omnidirectionally contains arithmetic progressions but has Assouad dimension 1. More precisely, we say that $F$ asymptotically and omnidirectionally contains arithmetic progressions if we can find an arithmetic progression of length $k$ and gap length $\Delta>0$ with direction $e\in S^{d-1}$ inside the $\epsilon \Delta$ neighbourhood of $F$ for all $\epsilon>0$, $k\geq 3$ and $e\in S^{d-1}$. Moreover, the dimension of our constructed example is the lowest-possible because we prove that a subset of $\mathbb{R}^d$ which asymptotically and omnidirectionally contains arithmetic progressions must have Assouad dimension greater than or equal to 1. We also get the same results for arithmetic patches, which are the higher dimensional extension of arithmetic progressions.
渐近全向包含等差数列的一维集合的构造
在本文中,我们构造了的子集 $\mathbb{R}^d$ 它渐近地、全向地包含等差数列,但维数为1。更准确地说,我们这样说 $F$ 如果能找到一个长度相等的等差数列,则渐近全向地包含等差数列 $k$ 间隙长度 $\Delta>0$ 有方向 $e\in S^{d-1}$ 在里面 $\epsilon \Delta$ 的邻域 $F$ 对所有人 $\epsilon>0$, $k\geq 3$ 和 $e\in S^{d-1}$. 此外,我们构造的示例的维数是最低的,因为我们证明了的子集 $\mathbb{R}^d$ 一个渐近且全向包含等差数列的矩阵,其维数必须大于或等于1。对于等差数列的高维扩展——等差数列,我们也得到了相同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信