{"title":"An Effective Model for Glueballs and Dual Superconductivity at Finite Temperature","authors":"A. Issifu, F. A. Brito","doi":"10.1155/2021/5658568","DOIUrl":null,"url":null,"abstract":"<jats:p>The glueballs lead to gluon and QCD monopole condensations as by-products of color confinement. A color dielectric function <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>G</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mo>∣</mo>\n <mi>ϕ</mi>\n <mo>∣</mo>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> coupled with a Abelian gauge field is properly defined to mediate the glueball interactions at confining regime after spontaneous symmetry breaking (SSB) of the gauge symmetry. The particles are expected to form through the quark-gluon plasma (QGP) hadronization phase where the free quarks and gluons start clamping together to form hadrons. The QCD-like vacuum <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mfenced open=\"〈\" close=\"〉\">\n <mrow>\n <msup>\n <mrow>\n <mi>η</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <msubsup>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mi>η</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msubsup>\n <msup>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mrow>\n <mi>μ</mi>\n <mi>ν</mi>\n </mrow>\n </msup>\n <msub>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mrow>\n <mi>μ</mi>\n <mi>ν</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, confining potential <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msub>\n <mrow>\n <mi>V</mi>\n </mrow>\n <mrow>\n <mi>c</mi>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>r</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, string tension <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>σ</mi>\n </math>\n </jats:inline-formula>, penetration depth <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula>, superconducting and normal monopole densities (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <msub>\n <mrow>\n <mi>n</mi>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n </msub>\n <mtext> </mtext>\n <msub>\n <mrow>\n <mi>n</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>), and the effective masses (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msubsup>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mi>η</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <msubsup>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mi>A</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula>) will be investigated at finite temperature <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>T</mi>\n </math>\n </jats:inline-formula>. We also calculate the strong “running” coupling <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <msub>\n <mrow>\n <mi>α</mi>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and subsequently the QCD <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>β</mi>\n </math>\n </jats:inline-formula>-function. The dual superconducting nature of the QCD vacuum will be investigated based on monopole condensation.</jats:p>","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/5658568","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 3
Abstract
The glueballs lead to gluon and QCD monopole condensations as by-products of color confinement. A color dielectric function coupled with a Abelian gauge field is properly defined to mediate the glueball interactions at confining regime after spontaneous symmetry breaking (SSB) of the gauge symmetry. The particles are expected to form through the quark-gluon plasma (QGP) hadronization phase where the free quarks and gluons start clamping together to form hadrons. The QCD-like vacuum , confining potential , string tension , penetration depth , superconducting and normal monopole densities (), and the effective masses ( and ) will be investigated at finite temperature . We also calculate the strong “running” coupling and subsequently the QCD -function. The dual superconducting nature of the QCD vacuum will be investigated based on monopole condensation.
胶球导致胶子和QCD单极子凝聚,作为颜色限制的副产品。适当定义了与阿贝尔规范场耦合的彩色介电函数GŞ规范对称性自发对称性破缺(SSB)后约束区的相互作用。粒子预计将通过夸克-胶子等离子体(QGP)强子化阶段形成,在该阶段,自由夸克和胶子开始夹紧在一起形成强子。类QCD真空η2mη2Fμμ,限制电位V c r,管柱张力σ,穿透深度λ,超导和正常单极子密度(ns n),和有效群众(mη2和m A2)将在有限温度下进行研究T我们还计算了强“运行”耦合αs,以及随后的QCDβ函数。基于单极子凝聚,将研究QCD真空的双超导性质。
期刊介绍:
Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.