S. Tai, L. Berg, R. Krishnamurthy, R. Newsom, A. Kirincich
{"title":"Validation of turbulence intensity as simulated by the Weather Research and Forecasting model off the US northeast coast","authors":"S. Tai, L. Berg, R. Krishnamurthy, R. Newsom, A. Kirincich","doi":"10.5194/wes-8-433-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Turbulence intensity (TI) is often used to quantify the strength of\nturbulence in wind energy applications and serves as the basis of standards\nin wind turbine design. Thus, accurately characterizing the spatiotemporal\nvariability in TI should lead to improved predictions of power production.\nNevertheless, turbulence measurements over the ocean are far less prevalent\nthan over land due to challenges in instrumental deployment, maintenance,\nand operation. Atmospheric models such as mesoscale (weather prediction) and large-eddy simulation (LES) models are commonly used in the wind energy industry to assess the spatial variability of a given site. However, the TI derivation from atmospheric models has not been well examined. An algorithm is proposed in this study to realize online calculation of TI in the Weather Research and Forecasting (WRF) model. Simulated TI is divided into two components depending on scale, including sub-grid (parameterized based on turbulence kinetic energy (TKE)) and grid resolved. The sensitivity of sea surface temperature (SST) on simulated TI is also tested. An assessment is performed by using observations collected during a field campaign conducted from February to June 2020 near the Woods Hole Oceanographic Institution Martha's Vineyard Coastal Observatory. Results show that while simulated TKE is generally smaller than the lidar-observed value, wind speed bias is usually small. Overall, this leads to a slight underestimation in sub-grid-scale estimated TI. Improved SST representation subsequently reduces model biases in atmospheric stability as well as wind speed and sub-grid TI near the hub height. Large TI events in conjunction with mesoscale weather systems observed during the studied period pose a challenge to accurately estimating TI from models. Due to notable uncertainty in accurately simulating those events, this suggests summing up sub-grid and resolved TI may not be an ideal solution. Efforts in further improving skills in simulating mesoscale flow and cloud systems are necessary as the next steps.\n","PeriodicalId":46540,"journal":{"name":"Wind Energy Science","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/wes-8-433-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Turbulence intensity (TI) is often used to quantify the strength of
turbulence in wind energy applications and serves as the basis of standards
in wind turbine design. Thus, accurately characterizing the spatiotemporal
variability in TI should lead to improved predictions of power production.
Nevertheless, turbulence measurements over the ocean are far less prevalent
than over land due to challenges in instrumental deployment, maintenance,
and operation. Atmospheric models such as mesoscale (weather prediction) and large-eddy simulation (LES) models are commonly used in the wind energy industry to assess the spatial variability of a given site. However, the TI derivation from atmospheric models has not been well examined. An algorithm is proposed in this study to realize online calculation of TI in the Weather Research and Forecasting (WRF) model. Simulated TI is divided into two components depending on scale, including sub-grid (parameterized based on turbulence kinetic energy (TKE)) and grid resolved. The sensitivity of sea surface temperature (SST) on simulated TI is also tested. An assessment is performed by using observations collected during a field campaign conducted from February to June 2020 near the Woods Hole Oceanographic Institution Martha's Vineyard Coastal Observatory. Results show that while simulated TKE is generally smaller than the lidar-observed value, wind speed bias is usually small. Overall, this leads to a slight underestimation in sub-grid-scale estimated TI. Improved SST representation subsequently reduces model biases in atmospheric stability as well as wind speed and sub-grid TI near the hub height. Large TI events in conjunction with mesoscale weather systems observed during the studied period pose a challenge to accurately estimating TI from models. Due to notable uncertainty in accurately simulating those events, this suggests summing up sub-grid and resolved TI may not be an ideal solution. Efforts in further improving skills in simulating mesoscale flow and cloud systems are necessary as the next steps.