Audio-Visual Speech Recognition in MISP2021 Challenge: Dataset Release and Deep Analysis

Hang Chen, Jun Du, Yusheng Dai, Chin-Hui Lee, S. Siniscalchi, Shinji Watanabe, O. Scharenborg, Jingdong Chen, Baocai Yin, Jia Pan
{"title":"Audio-Visual Speech Recognition in MISP2021 Challenge: Dataset Release and Deep Analysis","authors":"Hang Chen, Jun Du, Yusheng Dai, Chin-Hui Lee, S. Siniscalchi, Shinji Watanabe, O. Scharenborg, Jingdong Chen, Baocai Yin, Jia Pan","doi":"10.21437/interspeech.2022-10483","DOIUrl":null,"url":null,"abstract":"In this paper, we present the updated Audio-Visual Speech Recognition (AVSR) corpus of MISP2021 challenge, a large-scale audio-visual Chinese conversational corpus consisting of 141h audio and video data collected by far/middle/near microphones and far/middle cameras in 34 real-home TV rooms. To our best knowledge, our corpus is the first distant multi-microphone conversational Chinese audio-visual corpus and the first large vocabulary continuous Chinese lip-reading dataset in the adverse home-tv scenario. Moreover, we make a deep analysis of the corpus and conduct a comprehensive ablation study of all audio and video data in the audio-only/video-only/audio-visual systems. Error analysis shows video modality supplement acoustic information degraded by noise to reduce deletion errors and provide discriminative information in overlapping speech to reduce substitution errors. Finally, we also design a set of experiments such as frontend, data augmentation and end-to-end models for providing the direction of potential future work. The corpus 1 and the code 2 are released to promote the research not only in speech area but also for the computer vision area and cross-disciplinary research.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"1766-1770"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-10483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we present the updated Audio-Visual Speech Recognition (AVSR) corpus of MISP2021 challenge, a large-scale audio-visual Chinese conversational corpus consisting of 141h audio and video data collected by far/middle/near microphones and far/middle cameras in 34 real-home TV rooms. To our best knowledge, our corpus is the first distant multi-microphone conversational Chinese audio-visual corpus and the first large vocabulary continuous Chinese lip-reading dataset in the adverse home-tv scenario. Moreover, we make a deep analysis of the corpus and conduct a comprehensive ablation study of all audio and video data in the audio-only/video-only/audio-visual systems. Error analysis shows video modality supplement acoustic information degraded by noise to reduce deletion errors and provide discriminative information in overlapping speech to reduce substitution errors. Finally, we also design a set of experiments such as frontend, data augmentation and end-to-end models for providing the direction of potential future work. The corpus 1 and the code 2 are released to promote the research not only in speech area but also for the computer vision area and cross-disciplinary research.
MISP2021挑战中的视听语音识别:数据集发布和深度分析
在本文中,我们提出了MISP2021挑战中更新的视听语音识别(AVSR)语料库,这是一个大型视听汉语会话语料库,由远/中/近麦克风和远/中摄像机在34个真实家庭电视房间中收集的141小时音频和视频数据组成。据我们所知,我们的语料库是第一个远程多麦克风对话中文视听语料库,也是第一个在不利的家庭电视场景下的大词汇量连续中文唇读数据集。此外,我们对语料库进行了深入的分析,并对纯音频/纯视频/视听系统中的所有音频和视频数据进行了全面的消融研究。误差分析表明,视频模态补充被噪声退化的声信息以减少删除错误,并在重叠语音中提供判别信息以减少替换错误。最后,我们还设计了一组实验,如前端、数据增强和端到端模型,为潜在的未来工作提供方向。语料库1和代码2的发布不仅是为了促进语音领域的研究,也是为了促进计算机视觉领域和跨学科的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信