{"title":"Optimal design of stand-alone hybrid power system using wind and solar energy sources","authors":"M. Lamnadi, M. Trihi, A. Boulezhar, B. Bossoufi","doi":"10.1504/IJETP.2019.10019646","DOIUrl":null,"url":null,"abstract":"Stand-alone hybrid renewable energy systems are more reliable than one-energy source systems. However, their design is crucial. For this reason, a new methodology with simulation having as aim to design an autonomous hybrid PV-wind-battery system is proposed. Based on a triple multi-objective, the present methodology combines life cycle cost (LCC), embodied energy (EE) and loss of power supply probability (LPSP). For a location, meteorological and load data have been collected and assessed. Afterwards, components of the system and optimisation objectives have been modelled. Finally, an optimal configuration has been put in place using a dynamic model and applying a controlled elitist genetic algorithm for multi-objective optimisation. This methodology has been applied successfully for the sizing of a PV-wind-battery system to supply at least 95% of yearly total electric demand of a residential house.","PeriodicalId":35754,"journal":{"name":"International Journal of Energy Technology and Policy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Technology and Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJETP.2019.10019646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
Stand-alone hybrid renewable energy systems are more reliable than one-energy source systems. However, their design is crucial. For this reason, a new methodology with simulation having as aim to design an autonomous hybrid PV-wind-battery system is proposed. Based on a triple multi-objective, the present methodology combines life cycle cost (LCC), embodied energy (EE) and loss of power supply probability (LPSP). For a location, meteorological and load data have been collected and assessed. Afterwards, components of the system and optimisation objectives have been modelled. Finally, an optimal configuration has been put in place using a dynamic model and applying a controlled elitist genetic algorithm for multi-objective optimisation. This methodology has been applied successfully for the sizing of a PV-wind-battery system to supply at least 95% of yearly total electric demand of a residential house.