Spectral eigenmatrix of the planar spectral measures with four elements

Pub Date : 2023-02-28 DOI:10.1007/s10476-023-0207-5
S.-J. Li, W.-H. Ai
{"title":"Spectral eigenmatrix of the planar spectral measures with four elements","authors":"S.-J. Li,&nbsp;W.-H. Ai","doi":"10.1007/s10476-023-0207-5","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the spectral eigenmatrix problem of the planar self-similar spectral measures <i>μ</i><sub><i>Q,D</i></sub> generated by </p><div><div><span>$$Q = \\left({\\matrix{{2q} &amp; 0 \\cr 0 &amp; {2q} \\cr}} \\right)\\,\\,\\,{\\rm{and}}\\,\\,\\,D = \\left\\{{\\left({\\matrix{0 \\cr 0 \\cr}} \\right),\\left({\\matrix{1 \\cr 0 \\cr}} \\right),\\left({\\matrix{0 \\cr 1 \\cr}} \\right),\\left({\\matrix{{- 1} \\cr {- 1} \\cr}} \\right)} \\right\\},$$</span></div></div><p> where <i>q</i> ≥ 2 is an integer. For matrix <i>R</i> ∈ <i>M</i><sub>2</sub>(ℤ), we prove that there exist some spectrum Λ such that Λ and <i>R</i>Λ are both the spectra of <i>μ</i><sub><i>Q,D</i></sub> if and only if det <i>R</i> ∈ 2ℤ + 1.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0207-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0207-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the spectral eigenmatrix problem of the planar self-similar spectral measures μQ,D generated by

$$Q = \left({\matrix{{2q} & 0 \cr 0 & {2q} \cr}} \right)\,\,\,{\rm{and}}\,\,\,D = \left\{{\left({\matrix{0 \cr 0 \cr}} \right),\left({\matrix{1 \cr 0 \cr}} \right),\left({\matrix{0 \cr 1 \cr}} \right),\left({\matrix{{- 1} \cr {- 1} \cr}} \right)} \right\},$$

where q ≥ 2 is an integer. For matrix RM2(ℤ), we prove that there exist some spectrum Λ such that Λ and RΛ are both the spectra of μQ,D if and only if det R ∈ 2ℤ + 1.

分享
查看原文
四元平面光谱测度的光谱特征矩阵
我们考虑由$$Q=\left({\matrix{2q}&;0\cr0&;{2q}\cr}}\right)\,\,\、{\rm{and}\、\、\,D=\left \{\left(}\matric{0\cr0}\rights)、\left(\matrix}0\cr1}\right)、\left({\ matrix}\cr{-1}\cr}}\right)}\right\},$$,其中q≥2是一个整数。对于矩阵R∈M2(ℤ), 我们证明了存在一些谱∧,使得∧和R∧都是μQ,D的谱当且仅当det R∈2ℤ + 1.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信