{"title":"On factorization of separating maps on noncommutative L^p-spaces","authors":"C. Merdy, S. Zadeh","doi":"10.1512/iumj.2022.71.9111","DOIUrl":null,"url":null,"abstract":"For any semifinite von Neumann algebra ${\\mathcal M}$ and any $1\\leq p<\\infty$, we introduce a natutal $S^1$-valued noncommutative $L^p$-space $L^p({\\mathcal M};S^1)$. We say that a bounded map $T\\colon L^p({\\mathcal M})\\to L^p({\\mathcal N})$ is $S^1$-bounded (resp. $S^1$-contractive) if $T\\otimes I_{S^1}$ extends to a bounded (resp. contractive) map $T\\overline{\\otimes} I_{S^1}$ from $ L^p({\\mathcal M};S^1)$ into $L^p({\\mathcal N};S^1)$. We show that any completely positive map is $S^1$-bounded, with $\\Vert T\\overline{\\otimes} I_{S^1}\\Vert =\\Vert T\\Vert$. We use the above as a tool to investigate the separating maps $T\\colon L^p({\\mathcal M})\\to L^p({\\mathcal N})$ which admit a direct Yeadon type factorization, that is, maps for which there exist a $w^*$-continuous $*$-homomorphism $J\\colon{\\mathcal M}\\to{\\mathcal N}$, a partial isometry $w\\in{\\mathcal N}$ and a positive operator $B$ affiliated with ${\\mathcal N}$ such that $w^*w=J(1)=s(B)$, $B$ commutes with the range of $J$, and $T(x)=wBJ(x)$ for any $x\\in {\\mathcal M}\\cap L^p({\\mathcal M})$. Given a separating isometry $T\\colon L^p({\\mathcal M})\\to L^p({\\mathcal N})$, we show that $T$ is $S^1$-contractive if and only if it admits a direct Yeadon type factorization. We further show that if $p\\not=2$, the above holds true if and only if $T$ is completely contractive.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2022.71.9111","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8
Abstract
For any semifinite von Neumann algebra ${\mathcal M}$ and any $1\leq p<\infty$, we introduce a natutal $S^1$-valued noncommutative $L^p$-space $L^p({\mathcal M};S^1)$. We say that a bounded map $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ is $S^1$-bounded (resp. $S^1$-contractive) if $T\otimes I_{S^1}$ extends to a bounded (resp. contractive) map $T\overline{\otimes} I_{S^1}$ from $ L^p({\mathcal M};S^1)$ into $L^p({\mathcal N};S^1)$. We show that any completely positive map is $S^1$-bounded, with $\Vert T\overline{\otimes} I_{S^1}\Vert =\Vert T\Vert$. We use the above as a tool to investigate the separating maps $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ which admit a direct Yeadon type factorization, that is, maps for which there exist a $w^*$-continuous $*$-homomorphism $J\colon{\mathcal M}\to{\mathcal N}$, a partial isometry $w\in{\mathcal N}$ and a positive operator $B$ affiliated with ${\mathcal N}$ such that $w^*w=J(1)=s(B)$, $B$ commutes with the range of $J$, and $T(x)=wBJ(x)$ for any $x\in {\mathcal M}\cap L^p({\mathcal M})$. Given a separating isometry $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$, we show that $T$ is $S^1$-contractive if and only if it admits a direct Yeadon type factorization. We further show that if $p\not=2$, the above holds true if and only if $T$ is completely contractive.