Masur–Veech volumes and intersection theory: The principal strata of quadratic differentials

IF 2.3 1区 数学 Q1 MATHEMATICS
Dawei Chen, Martin Möller, Adrien Sauvaget, A. Giacchetto, D. Lewanski
{"title":"Masur–Veech volumes and intersection theory: The principal strata of quadratic differentials","authors":"Dawei Chen, Martin Möller, Adrien Sauvaget, A. Giacchetto, D. Lewanski","doi":"10.1215/00127094-2022-0063","DOIUrl":null,"url":null,"abstract":"We describe a conjectural formula via intersection numbers for the Masur-Veech volumes of strata of quadratic differentials with prescribed zero orders, and we prove the formula for the case when the zero orders are odd. For the principal strata of quadratic differentials with simple zeros, the formula reduces to compute the top Segre class of the quadratic Hodge bundle, which can be further simplified to certain linear Hodge integrals. An appendix proves that the intersection of this class with $\\psi$-classes can be computed by Eynard-Orantin topological recursion. \nAs applications, we analyze numerical properties of Masur-Veech volumes, area Siegel-Veech constants and sums of Lyapunov exponents of the principal strata for fixed genus and varying number of zeros, which settles the corresponding conjectures due to Grivaux-Hubert, Fougeron, and elaborated in [the7]. We also describe conjectural formulas for area Siegel-Veech constants and sums of Lyapunov exponents for arbitrary affine invariant submanifolds, and verify them for the principal strata.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0063","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

Abstract

We describe a conjectural formula via intersection numbers for the Masur-Veech volumes of strata of quadratic differentials with prescribed zero orders, and we prove the formula for the case when the zero orders are odd. For the principal strata of quadratic differentials with simple zeros, the formula reduces to compute the top Segre class of the quadratic Hodge bundle, which can be further simplified to certain linear Hodge integrals. An appendix proves that the intersection of this class with $\psi$-classes can be computed by Eynard-Orantin topological recursion. As applications, we analyze numerical properties of Masur-Veech volumes, area Siegel-Veech constants and sums of Lyapunov exponents of the principal strata for fixed genus and varying number of zeros, which settles the corresponding conjectures due to Grivaux-Hubert, Fougeron, and elaborated in [the7]. We also describe conjectural formulas for area Siegel-Veech constants and sums of Lyapunov exponents for arbitrary affine invariant submanifolds, and verify them for the principal strata.
Masur-Veech体积与交点理论:二次微分的主要层次
本文用交点数描述了给定零阶二次微分地层的Masur-Veech体积的猜想公式,并证明了零阶为奇阶情况下的猜想公式。对于具有简单零的二次微分的主层,公式简化为计算二次Hodge束的上Segre类,可进一步简化为若干线性Hodge积分。附录证明了该类与$\psi$-类的交可以用Eynard-Orantin拓扑递归计算。作为应用,我们分析了主地层固定属和变零数的Masur-Veech体积、Siegel-Veech面积常数和Lyapunov指数和的数值性质,解决了Grivaux-Hubert、Fougeron等人提出的相应猜想,并在[7]中进行了阐述。我们还描述了任意仿射不变子流形的面积Siegel-Veech常数和Lyapunov指数和的推测公式,并对主地层进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信