Fire-induced changes in soil properties depend on age and type of forests

IF 2.3 4区 环境科学与生态学 Q3 WATER RESOURCES
Slavomír Hološ, P. Šurda, Ľ. Lichner, Anton Zvala, V. Píš
{"title":"Fire-induced changes in soil properties depend on age and type of forests","authors":"Slavomír Hološ, P. Šurda, Ľ. Lichner, Anton Zvala, V. Píš","doi":"10.2478/johh-2022-0034","DOIUrl":null,"url":null,"abstract":"Abstract Wildfires affect different physical, chemical, and hydraulic soil properties, and the magnitude of their effects varies depending on intrinsic soil properties and wildfire characteristics. The objectives of this study are: to estimate the impact of heating temperature (50–900°C) on the properties of sandy soil (Arenosol) taken in 1) coniferous forests (Scots pine Pinus sylvestris) of different ages (30 and 100 years); and 2) coniferous (Scots pine Pinus sylvestris) and deciduous (alder Alnus glutinosa) forests of the same age (30 years). The forests are located in the central part of the Borská nížina lowland (western Slovakia), and the properties treated were soil organic carbon content (SOC), pH, and soil water repellency (measured in terms of water drop penetration time, WDPT). It was found that the impact of heating temperature on the properties of sandy soil is great and depends on both the age and type of forest. The SOC value decreased unevenly with temperature in all three soils, and it was higher in the 30-year-old deciduous forest soil than in the 30-year-old coniferous forest soil. The value of pH increased monotonously with temperature from 200 °C, and it was higher in 30-year-old coniferous forest soil than in the 100-year-old coniferous forest soil. SOC and WDPT in the 100-year-old coniferous forest soil were higher than SOC and WDPT in the 30-year-old coniferous forest soil. Results obtained (decrease in SOC, disappearance of SWR after heating to 400 °C, and increase in pH from heating temperature 200 °C) bring important information for post-fire vegetation restoration and post-fire management of Central European forests established on sandy soil.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"70 1","pages":"442 - 449"},"PeriodicalIF":2.3000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Of Hydrology And Hydromechanics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2478/johh-2022-0034","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Wildfires affect different physical, chemical, and hydraulic soil properties, and the magnitude of their effects varies depending on intrinsic soil properties and wildfire characteristics. The objectives of this study are: to estimate the impact of heating temperature (50–900°C) on the properties of sandy soil (Arenosol) taken in 1) coniferous forests (Scots pine Pinus sylvestris) of different ages (30 and 100 years); and 2) coniferous (Scots pine Pinus sylvestris) and deciduous (alder Alnus glutinosa) forests of the same age (30 years). The forests are located in the central part of the Borská nížina lowland (western Slovakia), and the properties treated were soil organic carbon content (SOC), pH, and soil water repellency (measured in terms of water drop penetration time, WDPT). It was found that the impact of heating temperature on the properties of sandy soil is great and depends on both the age and type of forest. The SOC value decreased unevenly with temperature in all three soils, and it was higher in the 30-year-old deciduous forest soil than in the 30-year-old coniferous forest soil. The value of pH increased monotonously with temperature from 200 °C, and it was higher in 30-year-old coniferous forest soil than in the 100-year-old coniferous forest soil. SOC and WDPT in the 100-year-old coniferous forest soil were higher than SOC and WDPT in the 30-year-old coniferous forest soil. Results obtained (decrease in SOC, disappearance of SWR after heating to 400 °C, and increase in pH from heating temperature 200 °C) bring important information for post-fire vegetation restoration and post-fire management of Central European forests established on sandy soil.
火灾引起的土壤性质变化取决于森林的年龄和类型
野火影响不同的土壤物理、化学和水力性质,其影响程度取决于土壤固有性质和野火特征。本研究的目的是:估计加热温度(50-900℃)对不同树龄(30年和100年)针叶林(苏格兰松)砂质土壤(沙土)性质的影响;2)相同年龄(30年)的针叶林(苏格兰松)和落叶林(桤木)。这些森林位于borsk nížina低地(斯洛伐克西部)的中部,处理的性质是土壤有机碳含量(SOC)、pH和土壤拒水性(以水滴渗透时间(WDPT)衡量)。研究发现,加热温度对沙土性质的影响很大,且与林龄和森林类型有关。3种土壤的有机碳值随温度的降低不均匀,30年落叶林土壤的有机碳值高于30年针叶林土壤。从200℃开始,pH值随温度单调增加,30年针叶林土壤pH值高于100年针叶林土壤pH值。100年针叶林土壤的SOC和WDPT高于30年针叶林土壤的SOC和WDPT。研究结果表明:中欧沙质土壤森林SOC降低,SWR消失,pH值在升温至200℃后升高,为火灾后植被恢复和火灾后管理提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
5.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: JOURNAL OF HYDROLOGY AND HYDROMECHANICS is an international open access journal for the basic disciplines of water sciences. The scope of hydrology is limited to biohydrology, catchment hydrology and vadose zone hydrology, primarily of temperate zone. The hydromechanics covers theoretical, experimental and computational hydraulics and fluid mechanics in various fields, two- and multiphase flows, including non-Newtonian flow, and new frontiers in hydraulics. The journal is published quarterly in English. The types of contribution include: research and review articles, short communications and technical notes. The articles have been thoroughly peer reviewed by international specialists and promoted to researchers working in the same field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信