Binocular summation in marmoset lateral geniculate nucleus

IF 1.1 4区 医学 Q4 NEUROSCIENCES
Elissa Belluccini, N. Zeater, A. Pietersen, C. D. Eiber, Paul R. Martin
{"title":"Binocular summation in marmoset lateral geniculate nucleus","authors":"Elissa Belluccini, N. Zeater, A. Pietersen, C. D. Eiber, Paul R. Martin","doi":"10.1017/S0952523819000099","DOIUrl":null,"url":null,"abstract":"Abstract In primates and carnivores, the main laminae of the dorsal lateral geniculate nucleus (LGN) receive monocular excitatory input in an eye-alternating fashion. There is also evidence that nondominant eye stimulation can reduce responses to dominant eye stimulation and that a subset of LGN cells in the koniocellular (K) layers receives convergent binocular excitatory input from both eyes. What is not known is how the two eye inputs summate in the K layers of LGN. Here, we aimed to answer this question by making extracellular array electrode recordings targeted to K layers in the marmoset (Callithrix jacchus) LGN, as visual stimuli (flashed 200 ms temporal square-wave pulses or drifting gratings) were presented to each eye independently or to both eyes simultaneously. We found that when the flashed stimulus was presented to both eyes, compared to the dominant eye, the peak firing rate of most cells (61%, 14/23) was reduced. The remainder showed response facilitation (17%) or partial summation (22%). A greater degree of facilitation was seen when the total number of spikes across the stimulus time window (200 ms) rather than peak firing rates was measured. A similar pattern of results was seen for contrast-varying gratings and for small numbers of parvocellular (n = 12) and magnocellular (n = 3) cells recorded. Our findings show that binocular summation in the marmoset LGN is weak and predominantly sublinear in nature.","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":"36 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0952523819000099","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523819000099","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract In primates and carnivores, the main laminae of the dorsal lateral geniculate nucleus (LGN) receive monocular excitatory input in an eye-alternating fashion. There is also evidence that nondominant eye stimulation can reduce responses to dominant eye stimulation and that a subset of LGN cells in the koniocellular (K) layers receives convergent binocular excitatory input from both eyes. What is not known is how the two eye inputs summate in the K layers of LGN. Here, we aimed to answer this question by making extracellular array electrode recordings targeted to K layers in the marmoset (Callithrix jacchus) LGN, as visual stimuli (flashed 200 ms temporal square-wave pulses or drifting gratings) were presented to each eye independently or to both eyes simultaneously. We found that when the flashed stimulus was presented to both eyes, compared to the dominant eye, the peak firing rate of most cells (61%, 14/23) was reduced. The remainder showed response facilitation (17%) or partial summation (22%). A greater degree of facilitation was seen when the total number of spikes across the stimulus time window (200 ms) rather than peak firing rates was measured. A similar pattern of results was seen for contrast-varying gratings and for small numbers of parvocellular (n = 12) and magnocellular (n = 3) cells recorded. Our findings show that binocular summation in the marmoset LGN is weak and predominantly sublinear in nature.
狨外侧膝状体核的双眼总和
摘要在灵长类和食肉动物中,背外侧膝状体核(LGN)的主要层以眼睛交替的方式接受单目兴奋性输入。还有证据表明,非优势眼刺激可以减少对优势眼刺激的反应,并且孔细胞(K)层中的LGN细胞亚群从双眼接收会聚的双眼兴奋性输入。目前尚不清楚的是,两只眼睛的输入是如何在LGN的K层中求和的。在这里,我们的目的是通过对狨猴LGN中的K层进行细胞外阵列电极记录来回答这个问题,因为视觉刺激(闪烁的200ms时间方波脉冲或漂移光栅)独立地或同时呈现给每只眼睛。我们发现,当向双眼提供闪光刺激时,与优势眼相比,大多数细胞的峰值放电率(61%,14/23)降低。其余显示反应促进(17%)或部分总和(22%)。当测量整个刺激时间窗口(200ms)的尖峰总数而不是峰值发射率时,可以看到更大程度的促进作用。对比度变化的光栅以及记录的少量小细胞(n=12)和大细胞(n=3)的结果相似。我们的研究结果表明,狨猴LGN的双眼总和在自然界中是微弱的,并且主要是亚线性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Neuroscience
Visual Neuroscience 医学-神经科学
CiteScore
2.20
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信