Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$

IF 0.4 Q4 MATHEMATICS
U. Dursun
{"title":"Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \\: \\mathbb H^2 \\times \\mathbb R$","authors":"U. Dursun","doi":"10.36890/iejg.1231759","DOIUrl":null,"url":null,"abstract":"In this work we study vertical graph surfaces invariant by parabolic screw motions with pitch $\\ell >0$ and constant Gaussian curvature or constant extrinsic curvature in the product space $\\mathbb H^2 \\times \\mathbb R$. In particular, we determine flat and extrinsically flat graph surfaces in $\\mathbb H^2 \\times \\mathbb R$. We also obtain complete and non-complete vertical graph surfaces in $\\mathbb H^2 \\times \\mathbb R$ with negative constant Gaussian curvature and zero extrinsic curvature.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1231759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we study vertical graph surfaces invariant by parabolic screw motions with pitch $\ell >0$ and constant Gaussian curvature or constant extrinsic curvature in the product space $\mathbb H^2 \times \mathbb R$. In particular, we determine flat and extrinsically flat graph surfaces in $\mathbb H^2 \times \mathbb R$. We also obtain complete and non-complete vertical graph surfaces in $\mathbb H^2 \times \mathbb R$ with negative constant Gaussian curvature and zero extrinsic curvature.
$\:\mathbb H^2 \times\mathbb R中常曲率抛物线螺旋运动的图曲面不变量$
在这项工作中,我们研究了在乘积空间$\mathbb H^2\times\mathbb R$中,间距$\ell>0$和常高斯曲率或常非本征曲率的抛物线螺旋运动不变的垂直图曲面。特别地,我们确定了$\mathbb H^2 \times\mathbb R$中的平面和外平面图曲面。我们还得到了$\mathbb H^2\times\mathbb R$中具有负常高斯曲率和零非本征曲率的完全和非完全竖图曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信