{"title":"New eigenvalue estimates involving Bessel functions","authors":"F. Chami, N. Ginoux, Georges Habib","doi":"10.5565/PUBLMAT6522109","DOIUrl":null,"url":null,"abstract":"Given a compact Riemannian manifold (M n , g) with boundary ∂M , we give an estimate for the quotient ∂M f dµ g M f dµ g , where f is a smooth positive function defined on M that satisfies some inequality involving the scalar Laplacian. By the mean value lemma established in [37], we provide a differential inequality for f which, under some curvature assumptions, can be interpreted in terms of Bessel functions. As an application of our main result, a direct proof is given of the Faber-Krahn inequalities for Dirichlet and Robin Laplacian. Also, a new estimate is established for the eigenvalues of the Dirac operator that involves a positive root of Bessel function besides the scalar curvature. Independently, we extend the Robin Laplacian on functions to differential forms. We prove that this natural extension defines a self-adjoint and elliptic operator whose spectrum is discrete and consists of positive real eigenvalues. In particular, we characterize its first eigenvalue and provide a lower bound of it in terms of Bessel functions.","PeriodicalId":54531,"journal":{"name":"Publicacions Matematiques","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publicacions Matematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6522109","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
Given a compact Riemannian manifold (M n , g) with boundary ∂M , we give an estimate for the quotient ∂M f dµ g M f dµ g , where f is a smooth positive function defined on M that satisfies some inequality involving the scalar Laplacian. By the mean value lemma established in [37], we provide a differential inequality for f which, under some curvature assumptions, can be interpreted in terms of Bessel functions. As an application of our main result, a direct proof is given of the Faber-Krahn inequalities for Dirichlet and Robin Laplacian. Also, a new estimate is established for the eigenvalues of the Dirac operator that involves a positive root of Bessel function besides the scalar curvature. Independently, we extend the Robin Laplacian on functions to differential forms. We prove that this natural extension defines a self-adjoint and elliptic operator whose spectrum is discrete and consists of positive real eigenvalues. In particular, we characterize its first eigenvalue and provide a lower bound of it in terms of Bessel functions.
给定一个边界为∂M的紧黎曼流形(mn, g),我们给出了商∂M f dµg M f dµg的估计,其中f是定义在M上的一个光滑正函数,它满足一些涉及标量拉普拉斯算子的不等式。利用[37]中建立的均值引理,我们给出了f的微分不等式,在某些曲率假设下,可以用贝塞尔函数来解释。作为我们的主要结果的一个应用,给出了Dirichlet和Robin Laplacian的Faber-Krahn不等式的一个直接证明。此外,对于除标量曲率外还包含贝塞尔函数正根的狄拉克算子的特征值,给出了一个新的估计。独立地,我们将函数上的罗宾拉普拉斯扩展到微分形式。证明了该自然推广定义了一个谱离散且由正实特征值组成的自伴随椭圆算子。特别地,我们描述了它的第一个特征值,并给出了它在贝塞尔函数中的下界。
期刊介绍:
Publicacions Matemàtiques is a research mathematical journal published by the Department of Mathematics of the Universitat Autònoma de Barcelona since 1976 (before 1988 named Publicacions de la Secció de Matemàtiques, ISSN: 0210-2978 print, 2014-4369 online). Two issues, constituting a single volume, are published each year. The journal has a large circulation being received by more than two hundred libraries all over the world. It is indexed by Mathematical Reviews, Zentralblatt Math., Science Citation Index, SciSearch®, ISI Alerting Services, COMPUMATH Citation Index®, and it participates in the Euclid Project and JSTOR. Free access is provided to all published papers through the web page.
Publicacions Matemàtiques is a non-profit university journal which gives special attention to the authors during the whole editorial process. In 2019, the average time between the reception of a paper and its publication was twenty-two months, and the average time between the acceptance of a paper and its publication was fifteen months. The journal keeps on receiving a large number of submissions, so the authors should be warned that currently only articles with excellent reports can be accepted.