Vertex-Bipartition: A Unified Approach for Kernelization of Graph Linear Layout Problems Parameterized by Vertex Cover

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Yunlong Liu, Yixuan Li, Jingui Huang
{"title":"Vertex-Bipartition: A Unified Approach for Kernelization of Graph Linear Layout Problems Parameterized by Vertex Cover","authors":"Yunlong Liu, Yixuan Li, Jingui Huang","doi":"10.1142/s0129054123410022","DOIUrl":null,"url":null,"abstract":"The linear layout of graphs problem asks, given a graph [Formula: see text] and a positive integer [Formula: see text], whether [Formula: see text] admits a layout consisting of a linear ordering of its vertices and a partition of its edges into [Formula: see text] sets such that the edges in each set meet some special requirements. Specific linear layouts include [Formula: see text]-stack layout, [Formula: see text]-queue layout, [Formula: see text]-arch layout, mixed [Formula: see text]-stack [Formula: see text]-queue layout and others. In this paper, we present a unified approach for kernelization of these linear layout problems parameterized by the vertex cover number [Formula: see text] of the input graph. The key point underlying our approach is to partition each set of related vertices into two distinct subsets with respect to the specific layouts, which immediately leads to some efficient reduction rules. We first apply this approach to the mixed [Formula: see text]-stack [Formula: see text]-queue layout problem and show that it admits a kernel of size [Formula: see text], which results in an algorithm running in time [Formula: see text], where [Formula: see text] denotes the size of the input graph. Our work does not only confirm the existence of a fixed-parameter tractable algorithm for this problem mentioned by Bhore et al. (J. Graph Algorithms Appl. 2022), but also derives new results for the [Formula: see text]-stack layout problem and for the [Formula: see text]-queue layout problem respectively. We also employ this approach to the upward [Formula: see text]-stack layout problem and obtain a new result improving that presented by Bhore et al. (GD 2021). Last but not least, we use this approach to the [Formula: see text]-arch layout problem and obtain a similar result.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054123410022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The linear layout of graphs problem asks, given a graph [Formula: see text] and a positive integer [Formula: see text], whether [Formula: see text] admits a layout consisting of a linear ordering of its vertices and a partition of its edges into [Formula: see text] sets such that the edges in each set meet some special requirements. Specific linear layouts include [Formula: see text]-stack layout, [Formula: see text]-queue layout, [Formula: see text]-arch layout, mixed [Formula: see text]-stack [Formula: see text]-queue layout and others. In this paper, we present a unified approach for kernelization of these linear layout problems parameterized by the vertex cover number [Formula: see text] of the input graph. The key point underlying our approach is to partition each set of related vertices into two distinct subsets with respect to the specific layouts, which immediately leads to some efficient reduction rules. We first apply this approach to the mixed [Formula: see text]-stack [Formula: see text]-queue layout problem and show that it admits a kernel of size [Formula: see text], which results in an algorithm running in time [Formula: see text], where [Formula: see text] denotes the size of the input graph. Our work does not only confirm the existence of a fixed-parameter tractable algorithm for this problem mentioned by Bhore et al. (J. Graph Algorithms Appl. 2022), but also derives new results for the [Formula: see text]-stack layout problem and for the [Formula: see text]-queue layout problem respectively. We also employ this approach to the upward [Formula: see text]-stack layout problem and obtain a new result improving that presented by Bhore et al. (GD 2021). Last but not least, we use this approach to the [Formula: see text]-arch layout problem and obtain a similar result.
顶点二分法:用顶点覆盖参数化图线性布局问题核化的统一方法
图的线性布局问题询问,给定一个图[公式:见文本]和一个正整数[公式:见图文本],[公式:看文本]是否允许一个布局,该布局由其顶点的线性排序和其边的划分组成,以使每个集中的边满足一些特殊要求。具体的线性布局包括[公式:见文本]-堆栈布局、[公式:见图文本]-队列布局、[配方:见文本]-拱形布局、混合[公式:看文本]-堆栈[公式:参见文本]-队列布局等。在本文中,我们提出了一种统一的方法来对这些线性布局问题进行核化,这些问题由输入图的顶点覆盖数[公式:见正文]参数化。我们的方法的关键点是将每组相关顶点划分为两个不同的子集,这会立即产生一些有效的约简规则。我们首先将这种方法应用于混合的[Former:see-text]-stack[Former:see-text]-queue布局问题,并证明它允许大小为[Former:see-text]的内核,这导致算法在时间上运行[Former:see-text],其中[Former:SEA-text]表示输入图的大小。我们的工作不仅证实了Bhore等人提出的固定参数可处理算法的存在。(J.Graph Algorithms Appl.2022),但也分别导出了[Formula:见文本]-堆栈布局问题和[Formula:见文本]-队列布局问题的新结果。我们还将这种方法应用于向上[公式:见正文]的堆栈布局问题,并获得了一个新的结果,改进了Bhore等人提出的结果。(GD 2021)。最后但同样重要的是,我们将这种方法用于[公式:见正文]-拱形布局问题,并获得了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信