Modeling climate change impact on dryland wheat production for increased crop yield in the Free State, South Africa, using GCM projections and the DSSAT model
{"title":"Modeling climate change impact on dryland wheat production for increased crop yield in the Free State, South Africa, using GCM projections and the DSSAT model","authors":"Caroline F. Ajilogba, S. Walker","doi":"10.3389/fenvs.2023.1067008","DOIUrl":null,"url":null,"abstract":"Introduction: The impact of climate change on food production in South Africa is likely to increase due to low rainfall and frequent droughts, resulting in food insecurity in the future. The use of well-calibrated and validated crop models with climate change data is important for assessing climate change impacts and developing adaptation strategies. In this study, the decision support system for agrotechnology transfer (DSSAT) crop model was used to predict yield using observed and projected climate data.Materials and Methods: Climate, soil, and crop management data were collected from wheat-growing study sites in Bethlehem, South Africa. The DSSAT wheat model (CROPSIM-CERES) used was already calibrated, and validated by Serage et al. (Evaluating Climate Change Adaptation Strategies for Disaster Risk Management: Case Study for Bethlehem Wheat Farmers, South Africa, 2017) using three wheat cultivar coefficients obtained from the cultivar adaptation experiment by the ARC-Small Grain Institute. The model was run with historical climate data for the eastern Free State (Bethlehem) from 1999 to 2018 as the baseline period. To determine the effects of climate change, the crop model simulation for wheat was run with future projections from four Global Climate Models (GCM): BCC-CSM1_1, GFDL-ESM2G, ENSEMBLE, and MIROC from 2020 to 2077.Results: The average wheat yield for the historic climate data was 1145.2 kg/ha and was slightly lower than the highest average yield of 1215.9 kg/ha from GCM ENSEMBLE during Representative concentration pathways (RCP) 2.6, while the lowest yield of 29.8 kg/ha was produced during RCP 8.5 (GCM GFDL-ESM2G). Model GFDL-ESM2G produced low yields (29.8–47.74 kg/ha) during RCP 8.5 and RCP 6.0, respectively. The yield range for GCM BCC-CSM1_1 was 770.2 kg/ha during RCP 2.6 to 921.68 kg/ha during RCP 4.5 and 547.84 kg/ha during RCP 8.5 to 700.22 kg/ha during RCP 2.6 for GCM MIROC.Conclusion: This study showed a declining trend in yield for future climate projections from RCP2.6 to RCP8.5, indicating that the possible impacts of higher temperatures and reduced rainfall in the projected future climate will slightly decrease wheat production in the eastern Free State. Adaptation measures to mitigate the potential impact of climate change could include possible changes in planting dates and cultivars. Using a crop model to simulate the response of crops to variations in weather conditions can be useful to generate advisories for farmers to prevent low yield.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2023.1067008","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The impact of climate change on food production in South Africa is likely to increase due to low rainfall and frequent droughts, resulting in food insecurity in the future. The use of well-calibrated and validated crop models with climate change data is important for assessing climate change impacts and developing adaptation strategies. In this study, the decision support system for agrotechnology transfer (DSSAT) crop model was used to predict yield using observed and projected climate data.Materials and Methods: Climate, soil, and crop management data were collected from wheat-growing study sites in Bethlehem, South Africa. The DSSAT wheat model (CROPSIM-CERES) used was already calibrated, and validated by Serage et al. (Evaluating Climate Change Adaptation Strategies for Disaster Risk Management: Case Study for Bethlehem Wheat Farmers, South Africa, 2017) using three wheat cultivar coefficients obtained from the cultivar adaptation experiment by the ARC-Small Grain Institute. The model was run with historical climate data for the eastern Free State (Bethlehem) from 1999 to 2018 as the baseline period. To determine the effects of climate change, the crop model simulation for wheat was run with future projections from four Global Climate Models (GCM): BCC-CSM1_1, GFDL-ESM2G, ENSEMBLE, and MIROC from 2020 to 2077.Results: The average wheat yield for the historic climate data was 1145.2 kg/ha and was slightly lower than the highest average yield of 1215.9 kg/ha from GCM ENSEMBLE during Representative concentration pathways (RCP) 2.6, while the lowest yield of 29.8 kg/ha was produced during RCP 8.5 (GCM GFDL-ESM2G). Model GFDL-ESM2G produced low yields (29.8–47.74 kg/ha) during RCP 8.5 and RCP 6.0, respectively. The yield range for GCM BCC-CSM1_1 was 770.2 kg/ha during RCP 2.6 to 921.68 kg/ha during RCP 4.5 and 547.84 kg/ha during RCP 8.5 to 700.22 kg/ha during RCP 2.6 for GCM MIROC.Conclusion: This study showed a declining trend in yield for future climate projections from RCP2.6 to RCP8.5, indicating that the possible impacts of higher temperatures and reduced rainfall in the projected future climate will slightly decrease wheat production in the eastern Free State. Adaptation measures to mitigate the potential impact of climate change could include possible changes in planting dates and cultivars. Using a crop model to simulate the response of crops to variations in weather conditions can be useful to generate advisories for farmers to prevent low yield.
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.