Coefficients of (inverse) unitary cyclotomic polynomials

IF 0.4 4区 数学 Q4 MATHEMATICS
G. Jones, P. I. Kester, L. Martirosyan, P. Moree, L. T'oth, B. White, B. Zhang
{"title":"Coefficients of (inverse) unitary cyclotomic polynomials","authors":"G. Jones, P. I. Kester, L. Martirosyan, P. Moree, L. T'oth, B. White, B. Zhang","doi":"10.2996/kmj/1594313556","DOIUrl":null,"url":null,"abstract":"The notion of block divisibility naturally leads one to introduce unitary cyclotomic polynomials $\\Phi_n^*(x)$. They can be written as certain products of cyclotomic poynomials. We study the case where $n$ has two or three distinct prime factors using numerical semigroups, respectively Bachman's inclusion-exclusion polynomials. Given $m\\ge 1$ we show that every integer occurs as a coefficient of $\\Phi^*_{mn}(x)$ for some $n\\ge 1$. Here $n$ will typically have many different prime factors. We also consider similar questions for the polynomials $(x^n-1)/\\Phi_n^*(x),$ the inverse unitary cyclotomic polynomials.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj/1594313556","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

The notion of block divisibility naturally leads one to introduce unitary cyclotomic polynomials $\Phi_n^*(x)$. They can be written as certain products of cyclotomic poynomials. We study the case where $n$ has two or three distinct prime factors using numerical semigroups, respectively Bachman's inclusion-exclusion polynomials. Given $m\ge 1$ we show that every integer occurs as a coefficient of $\Phi^*_{mn}(x)$ for some $n\ge 1$. Here $n$ will typically have many different prime factors. We also consider similar questions for the polynomials $(x^n-1)/\Phi_n^*(x),$ the inverse unitary cyclotomic polynomials.
(逆)酉环多项式的系数
块可分性的概念很自然地引导人们引入酉环多项式$\Phi_n^*(x)$。它们可以写成某些分环多项式的乘积。我们研究的情况下,$n$有两个或三个不同的素数因子使用数值半群,分别巴赫曼的包容-排斥多项式。给定$m\ge 1$,我们证明每个整数都是某个$n\ge 1$的$\Phi^*_{mn}(x)$的系数。这里$n$通常有许多不同的质因数。我们也考虑多项式$(x^n-1)/\Phi_n^*(x),$逆酉环多项式的类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信