Trevor Winchester, Elysia Kustra, Ikale Cormier, Aleksandr Cherniaev
{"title":"Ballistic performance of integral body armor with closed-cell aluminum foam: A numerical study","authors":"Trevor Winchester, Elysia Kustra, Ikale Cormier, Aleksandr Cherniaev","doi":"10.1016/j.finmec.2023.100187","DOIUrl":null,"url":null,"abstract":"<div><p>This numerical study is dedicated to investigating the ballistic performance of three-component integral body armor comprising ceramic façade, layers of ultra-high molecular weight polyethylene fiber-based composite (Dyneema) and closed-cell aluminum foam against NIJ-Type IV armor-piercing bullets. A numerical model of integral armor with a ceramic façade and a fiber-reinforced composite backing plate was developed in IMPETUS Afea Solver and verified against experimental data. The verified model was used to design a \"baseline configuration\" of two-component integral armor that can stop the NIJ-Type IV projectiles. Three-component armor configurations were obtained by introducing layer(s) of closed-cell aluminum foam into the laminate. Laminates with different stacking sequences of composite and porous layers and different foam relative densities were studied and compared with the baseline two-component configuration. The study presents new insights into the mechanics of perforation of integral armor with closed-cell foam and provides design recommendations for such armor systems.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
This numerical study is dedicated to investigating the ballistic performance of three-component integral body armor comprising ceramic façade, layers of ultra-high molecular weight polyethylene fiber-based composite (Dyneema) and closed-cell aluminum foam against NIJ-Type IV armor-piercing bullets. A numerical model of integral armor with a ceramic façade and a fiber-reinforced composite backing plate was developed in IMPETUS Afea Solver and verified against experimental data. The verified model was used to design a "baseline configuration" of two-component integral armor that can stop the NIJ-Type IV projectiles. Three-component armor configurations were obtained by introducing layer(s) of closed-cell aluminum foam into the laminate. Laminates with different stacking sequences of composite and porous layers and different foam relative densities were studied and compared with the baseline two-component configuration. The study presents new insights into the mechanics of perforation of integral armor with closed-cell foam and provides design recommendations for such armor systems.