Using the Weighted Kendall Distance to Analyze Rank Data in Psychology

IF 1.3
Johnny van Doorn, M. Lee, Holly A. Westfall
{"title":"Using the Weighted Kendall Distance to Analyze Rank Data in Psychology","authors":"Johnny van Doorn, M. Lee, Holly A. Westfall","doi":"10.20982/TQMP.17.2.P154","DOIUrl":null,"url":null,"abstract":"Although the Kendall distance is a standard metric in computer science, it is less widely used in psychology. We demonstrate the usefulness of the Kendall distance for analyzing psychological data that take the form of ranks, lists, or orders of items. We focus on weighted extensions of the metric that allow for heterogeneity of item importance, item position, and item similarity, as well showing how the metric can accommodate missingness in the form of top-k lists. To demonstrate how the Kendall distance can help address research questions in psychology, we present four applications to previous data. These applications involve the recall of events on September 11, people's preference rankings for the months of the year, people's free recall of animal names in a clinical setting, and expert predictions involving American football outcomes.","PeriodicalId":93055,"journal":{"name":"The quantitative methods for psychology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quantitative methods for psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20982/TQMP.17.2.P154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Although the Kendall distance is a standard metric in computer science, it is less widely used in psychology. We demonstrate the usefulness of the Kendall distance for analyzing psychological data that take the form of ranks, lists, or orders of items. We focus on weighted extensions of the metric that allow for heterogeneity of item importance, item position, and item similarity, as well showing how the metric can accommodate missingness in the form of top-k lists. To demonstrate how the Kendall distance can help address research questions in psychology, we present four applications to previous data. These applications involve the recall of events on September 11, people's preference rankings for the months of the year, people's free recall of animal names in a clinical setting, and expert predictions involving American football outcomes.
用加权Kendall距离分析心理学中的秩数据
虽然肯德尔距离是计算机科学中的标准度量,但它在心理学中的应用并不广泛。我们展示了肯德尔距离在分析以排名、列表或项目顺序为形式的心理数据方面的有用性。我们关注度量的加权扩展,它允许项目重要性、项目位置和项目相似性的异质性,并展示了度量如何以top-k列表的形式适应缺失。为了证明肯德尔距离如何帮助解决心理学中的研究问题,我们对以前的数据提出了四种应用。这些应用包括回忆911事件,人们对一年中的几个月的偏好排名,人们在临床环境中自由回忆动物名称,以及有关美式足球结果的专家预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信