Timeliness reduction on industrial turnover index based on machine learning algorithms

Q3 Decision Sciences
L. Barreñada, Juan Carlos Gálvez Sainz de Cueto, Jorge Fernández Calatrava
{"title":"Timeliness reduction on industrial turnover index based on machine learning algorithms","authors":"L. Barreñada, Juan Carlos Gálvez Sainz de Cueto, Jorge Fernández Calatrava","doi":"10.3233/sji-220086","DOIUrl":null,"url":null,"abstract":"The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning algorithms to improve the timeliness under a controlled compromise of accuracy of the Spanish Industrial Turnover Index (ITI). The methodology has been developed based on a modular and standardized approach that could be easily extended to other surveys. Our advanced index allows us to predict the ITI 31 days before publication with a median error of 0.5 points over the period Mar 2016–Apr 21, in an index with large oscillations. The results are promising and support the idea of the use of these techniques in improving the quality dimension of timeliness while accuracy is kept under control.","PeriodicalId":55877,"journal":{"name":"Statistical Journal of the IAOS","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Journal of the IAOS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sji-220086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning algorithms to improve the timeliness under a controlled compromise of accuracy of the Spanish Industrial Turnover Index (ITI). The methodology has been developed based on a modular and standardized approach that could be easily extended to other surveys. Our advanced index allows us to predict the ITI 31 days before publication with a median error of 0.5 points over the period Mar 2016–Apr 21, in an index with large oscillations. The results are promising and support the idea of the use of these techniques in improving the quality dimension of timeliness while accuracy is kept under control.
基于机器学习算法的工业营业额指标的及时性降低
官方统计数据编制的现代化不仅应利用新的数据来源,还应利用适用于传统调查和行政数据的新统计方法。这改进了传统的质量标准。在这里,我们提出了一种统计学习算法的应用,以在西班牙工业营业额指数(ITI)准确性的受控折衷下提高及时性。该方法是在模块化和标准化方法的基础上制定的,可以很容易地扩展到其他调查。我们的高级指数使我们能够在发布前31天预测ITI,在2016年3月至4月21日期间,中位误差为0.5点,这是一个波动较大的指数。结果是有希望的,并支持使用这些技术在控制准确性的同时提高及时性的质量维度的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Journal of the IAOS
Statistical Journal of the IAOS Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
1.30
自引率
0.00%
发文量
116
期刊介绍: This is the flagship journal of the International Association for Official Statistics and is expected to be widely circulated and subscribed to by individuals and institutions in all parts of the world. The main aim of the Journal is to support the IAOS mission by publishing articles to promote the understanding and advancement of official statistics and to foster the development of effective and efficient official statistical services on a global basis. Papers are expected to be of wide interest to readers. Such papers may or may not contain strictly original material. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信