Control of eigenfunctions on surfaces of variable curvature

IF 3.5 1区 数学 Q1 MATHEMATICS
S. Dyatlov, Long Jin, S. Nonnenmacher
{"title":"Control of eigenfunctions on surfaces of variable curvature","authors":"S. Dyatlov, Long Jin, S. Nonnenmacher","doi":"10.1090/jams/979","DOIUrl":null,"url":null,"abstract":"We prove a microlocal lower bound on the mass of high energy eigenfunctions of the Laplacian on compact surfaces of negative curvature, and more generally on surfaces with Anosov geodesic flows. This implies controllability for the Schrödinger equation by any nonempty open set, and shows that every semiclassical measure has full support. We also prove exponential energy decay for solutions to the damped wave equation on such surfaces, for any nontrivial damping coefficient. These results extend previous works (see Semyon Dyatlov and Long Jin [Acta Math. 220 (2018), pp. 297–339] and Long Jin [Comm. Math. Phys. 373 (2020), pp. 771–794]), which considered the setting of surfaces of constant negative curvature.\n\nThe proofs use the strategy of Semyon Dyatlov and Long Jin [Acta Math. 220 (2018), pp. 297–339 and Long Jin [Comm. Math. Phys. 373 (2020), pp. 771–794] and rely on the fractal uncertainty principle of Jean Bourgain and Semyon Dyatlov [Ann. of Math. (2) 187 (2018), pp. 825–867]. However, in the variable curvature case the stable/unstable foliations are not smooth, so we can no longer associate to these foliations a pseudodifferential calculus of the type used by Semyon Dyatlov and Joshua Zahl [Geom. Funct. Anal. 26 (2016), pp. 1011–1094]. Instead, our argument uses Egorov’s theorem up to local Ehrenfest time and the hyperbolic parametrix of Stéphane Nonnenmacher and Maciej Zworski [Acta Math. 203 (2009), pp. 149–233], together with the \n\n \n \n C\n \n 1\n +\n \n \n C^{1+}\n \n\n regularity of the stable/unstable foliations.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/979","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 38

Abstract

We prove a microlocal lower bound on the mass of high energy eigenfunctions of the Laplacian on compact surfaces of negative curvature, and more generally on surfaces with Anosov geodesic flows. This implies controllability for the Schrödinger equation by any nonempty open set, and shows that every semiclassical measure has full support. We also prove exponential energy decay for solutions to the damped wave equation on such surfaces, for any nontrivial damping coefficient. These results extend previous works (see Semyon Dyatlov and Long Jin [Acta Math. 220 (2018), pp. 297–339] and Long Jin [Comm. Math. Phys. 373 (2020), pp. 771–794]), which considered the setting of surfaces of constant negative curvature. The proofs use the strategy of Semyon Dyatlov and Long Jin [Acta Math. 220 (2018), pp. 297–339 and Long Jin [Comm. Math. Phys. 373 (2020), pp. 771–794] and rely on the fractal uncertainty principle of Jean Bourgain and Semyon Dyatlov [Ann. of Math. (2) 187 (2018), pp. 825–867]. However, in the variable curvature case the stable/unstable foliations are not smooth, so we can no longer associate to these foliations a pseudodifferential calculus of the type used by Semyon Dyatlov and Joshua Zahl [Geom. Funct. Anal. 26 (2016), pp. 1011–1094]. Instead, our argument uses Egorov’s theorem up to local Ehrenfest time and the hyperbolic parametrix of Stéphane Nonnenmacher and Maciej Zworski [Acta Math. 203 (2009), pp. 149–233], together with the C 1 + C^{1+} regularity of the stable/unstable foliations.
变曲率曲面上本征函数的控制
我们证明了在负曲率的紧致曲面上,以及在具有Anosov测地流的曲面上,拉普拉斯算子的高能本征函数质量的微局部下界。这意味着薛定谔方程由任何非空开集的可控性,并表明每个半经典测度都有充分的支持。我们还证明了对于任何非平凡阻尼系数,在这种表面上的阻尼波方程解的指数能量衰减。这些结果扩展了以前的工作(见Semyon Dyatlov和Long Jin[Acta Math.220(2018),pp.297–339]和Long Jin[Comm.Math.Phys.373(2020),pp.771–794]),这些工作考虑了恒定负曲率表面的设置。这些证明使用了Semyon Dyatlov和Long Jin的策略[Acta Math.220(2018),pp.297–339和Long Jin[Comm.Math.Phys.373(2020),pp.771–794],并依赖于Jean Bourgain和Semyon Dyatlov的分形不确定性原理[Ann of Math.(2)187(2018)。pp.825–867]。然而,在可变曲率的情况下,稳定/不稳定的叶理是不光滑的,因此,我们不能再将Semyon Dyatlov和Joshua Zahl[Geom.Funct.Anal.26(2016),pp.1011-1094]使用的类型的伪微分学与这些叶理联系起来。相反,我们的论点使用了Egorov定理直到局部Ehrenfest时间,以及Stéphane Nonnenmacher和Maciej Zworski的双曲参数[Acta Math.203(2009),pp.149-233],以及稳定/不稳定叶理的C1+C^{1+}规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信