{"title":"Discounted optimal stopping problems in first-passage time models with random thresholds","authors":"P. Gapeev, Hessah Al Motairi","doi":"10.1017/jpr.2021.85","DOIUrl":null,"url":null,"abstract":"Abstract We derive closed-form solutions to some discounted optimal stopping problems related to the perpetual American cancellable dividend-paying put and call option pricing problems in an extension of the Black–Merton–Scholes model. The cancellation times are assumed to occur when the underlying risky asset price process hits some unobservable random thresholds. The optimal stopping times are shown to be the first times at which the asset price reaches stochastic boundaries depending on the current values of its running maximum and minimum processes. The proof is based on the reduction of the original optimal stopping problems to the associated free-boundary problems and the solution of the latter problems by means of the smooth-fit and modified normal-reflection conditions. We show that the optimal stopping boundaries are characterised as the maximal and minimal solutions of certain first-order nonlinear ordinary differential equations.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"59 1","pages":"714 - 733"},"PeriodicalIF":0.7000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2021.85","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract We derive closed-form solutions to some discounted optimal stopping problems related to the perpetual American cancellable dividend-paying put and call option pricing problems in an extension of the Black–Merton–Scholes model. The cancellation times are assumed to occur when the underlying risky asset price process hits some unobservable random thresholds. The optimal stopping times are shown to be the first times at which the asset price reaches stochastic boundaries depending on the current values of its running maximum and minimum processes. The proof is based on the reduction of the original optimal stopping problems to the associated free-boundary problems and the solution of the latter problems by means of the smooth-fit and modified normal-reflection conditions. We show that the optimal stopping boundaries are characterised as the maximal and minimal solutions of certain first-order nonlinear ordinary differential equations.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.