{"title":"Classifying Regions of High Model Error Within a Data-Driven RANS Closure: Application to Wind Turbine Wakes","authors":"Julia Steiner, Axelle Viré, Richard P. Dwight","doi":"10.1007/s10494-022-00346-6","DOIUrl":null,"url":null,"abstract":"<div><p>Data-driven Reynolds-averaged Navier–Stokes (RANS) turbulence closures are increasing seen as a viable alternative to general-purpose RANS closures, when LES reference data is available—also in wind-energy. Parsimonious closures with few, simple terms have advantages in terms of stability, interpret-ability, and execution speed. However experience suggests that closure model corrections need be made only in limited regions—e.g. in the near-wake of wind turbines and not in the majority of the flow. A parsimonious model therefore must find a middle ground between precise corrections in the wake, and zero corrections elsewhere. We attempt to resolve this impasse by introducing a classifier to identify regions needing correction, and only fit and apply our model correction there. We observe that such classifier-based models are significantly simpler (with fewer terms) than models without a classifier, and have similar accuracy, but are more prone to instability. We apply our framework to three flows consisting of multiple wind-turbines in neutral conditions with interacting wakes.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"109 3","pages":"545 - 570"},"PeriodicalIF":2.0000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-022-00346-6.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-022-00346-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4
Abstract
Data-driven Reynolds-averaged Navier–Stokes (RANS) turbulence closures are increasing seen as a viable alternative to general-purpose RANS closures, when LES reference data is available—also in wind-energy. Parsimonious closures with few, simple terms have advantages in terms of stability, interpret-ability, and execution speed. However experience suggests that closure model corrections need be made only in limited regions—e.g. in the near-wake of wind turbines and not in the majority of the flow. A parsimonious model therefore must find a middle ground between precise corrections in the wake, and zero corrections elsewhere. We attempt to resolve this impasse by introducing a classifier to identify regions needing correction, and only fit and apply our model correction there. We observe that such classifier-based models are significantly simpler (with fewer terms) than models without a classifier, and have similar accuracy, but are more prone to instability. We apply our framework to three flows consisting of multiple wind-turbines in neutral conditions with interacting wakes.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.