On bipartite divisor graph for character degrees

IF 0.7 Q2 MATHEMATICS
S. A. Moosavi
{"title":"On bipartite divisor graph for character degrees","authors":"S. A. Moosavi","doi":"10.22108/IJGT.2017.9852","DOIUrl":null,"url":null,"abstract":"‎‎The concept of the bipartite divisor graph for integer subsets has been considered in [M‎. ‎A‎. ‎Iranmanesh and C‎. ‎E‎. ‎Praeger‎, ‎Bipartite divisor graphs for integer subsets‎, Graphs Combin.‎,  26 (2010) 95--105.]‎. ‎In this paper‎, ‎we will consider this graph for the set of character degrees of a finite group $G$ and obtain some properties of this graph‎. ‎We show that if $G$ is a solvable group‎, ‎then the number of connected components of this graph is at most $2$ and if $G$ is a non-solvable group‎, ‎then it has at most $3$ connected components‎. ‎We also show that‎ ‎the diameter of a connected bipartite divisor graph is bounded by $7$ and obtain some properties of groups whose graphs are complete bipartite graphs‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":"6 1","pages":"1-7"},"PeriodicalIF":0.7000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2017.9852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

‎‎The concept of the bipartite divisor graph for integer subsets has been considered in [M‎. ‎A‎. ‎Iranmanesh and C‎. ‎E‎. ‎Praeger‎, ‎Bipartite divisor graphs for integer subsets‎, Graphs Combin.‎,  26 (2010) 95--105.]‎. ‎In this paper‎, ‎we will consider this graph for the set of character degrees of a finite group $G$ and obtain some properties of this graph‎. ‎We show that if $G$ is a solvable group‎, ‎then the number of connected components of this graph is at most $2$ and if $G$ is a non-solvable group‎, ‎then it has at most $3$ connected components‎. ‎We also show that‎ ‎the diameter of a connected bipartite divisor graph is bounded by $7$ and obtain some properties of groups whose graphs are complete bipartite graphs‎.
特征度的二部除数图
[M]讨论了整数子集的二部除数图的概念。‎‎。伊朗和C。‎‎。Praeger,整数子集的二部除数图,图组合。[j], 26(2010) 95—105。在本文中,我们将考虑有限群$G$的特征度集的图,并得到该图的一些性质。我们证明了如果$G$是一个可解群,那么这个图的连通分量的个数最多为$2,如果$G$是一个不可解群,那么它的连通分量的个数最多为$3。我们还证明了连通二部除数图的直径以7为界,并得到了图为完全二部图的群的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信