Yihao Wu , Junjie Wang , Xiufeng He , Yunlong Wu , Dongzhen Jia , Yueqian Shen
{"title":"Coastal bathymetry inversion using SAR-based altimetric gravity data: A case study over the South Sandwich Island","authors":"Yihao Wu , Junjie Wang , Xiufeng He , Yunlong Wu , Dongzhen Jia , Yueqian Shen","doi":"10.1016/j.geog.2022.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>The global bathymetry models are usually of low accuracy over the coastline of polar areas due to the harsh climatic environment and the complex topography. Satellite altimetric gravity data can be a supplement and plays a key role in bathymetry modeling over these regions. The Synthetic Aperture Radar (SAR) altimeters in the missions like CryoSat-2 and Sentinel-3A/3B can relieve waveform contamination that existed in conventional altimeters and provide data with improved accuracy and spatial resolution. In this study, we investigate the potential application of SAR altimetric gravity data in enhancing coastal bathymetry, where the effects on local bathymetry modeling introduced from SAR altimetry data are quantified and evaluated. Furthermore, we study the effects on bathymetry modeling by using different scale factor calculation approaches, where a partition-wise scheme is implemented. The numerical experiment over the South Sandwich Islands near Antarctica suggests that using SAR-based altimetric gravity data improves local coastal bathymetry modeling, compared with the model calculated without SAR altimetry data by a magnitude of <span><math><mrow><mn>3.55</mn></mrow></math></span> m within 10 km of offshore areas. Moreover, by using the partition-wise scheme for scale factor calculation, the quality of the coastal bathymetry model is improved by 7.34 m compared with the result derived from the traditional method. These results indicate the superiority of using SAR altimetry data in coastal bathymetry inversion.</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":"14 3","pages":"Pages 212-222"},"PeriodicalIF":2.8000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167498472200088X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
The global bathymetry models are usually of low accuracy over the coastline of polar areas due to the harsh climatic environment and the complex topography. Satellite altimetric gravity data can be a supplement and plays a key role in bathymetry modeling over these regions. The Synthetic Aperture Radar (SAR) altimeters in the missions like CryoSat-2 and Sentinel-3A/3B can relieve waveform contamination that existed in conventional altimeters and provide data with improved accuracy and spatial resolution. In this study, we investigate the potential application of SAR altimetric gravity data in enhancing coastal bathymetry, where the effects on local bathymetry modeling introduced from SAR altimetry data are quantified and evaluated. Furthermore, we study the effects on bathymetry modeling by using different scale factor calculation approaches, where a partition-wise scheme is implemented. The numerical experiment over the South Sandwich Islands near Antarctica suggests that using SAR-based altimetric gravity data improves local coastal bathymetry modeling, compared with the model calculated without SAR altimetry data by a magnitude of m within 10 km of offshore areas. Moreover, by using the partition-wise scheme for scale factor calculation, the quality of the coastal bathymetry model is improved by 7.34 m compared with the result derived from the traditional method. These results indicate the superiority of using SAR altimetry data in coastal bathymetry inversion.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.