G. Ascione, D. Castorina, G. Catino, C. Mantegazza
{"title":"A matrix Harnack inequality for semilinear heat equations","authors":"G. Ascione, D. Castorina, G. Catino, C. Mantegazza","doi":"10.3934/mine.2023003","DOIUrl":null,"url":null,"abstract":"<abstract><p>We derive a matrix version of Li & Yau–type estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci tensor, similarly to what R. Hamilton did in <sup>[<xref ref-type=\"bibr\" rid=\"b5\">5</xref>]</sup> for the standard heat equation. We then apply these estimates to obtain some Harnack–type inequalities, which give local bounds on the solutions in terms of the geometric quantities involved.</p></abstract>","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
We derive a matrix version of Li & Yau–type estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci tensor, similarly to what R. Hamilton did in [5] for the standard heat equation. We then apply these estimates to obtain some Harnack–type inequalities, which give local bounds on the solutions in terms of the geometric quantities involved.