A flexible block classical Gram–Schmidt skeleton with reorthogonalization

IF 1.8 3区 数学 Q1 MATHEMATICS
Qinmeng Zou
{"title":"A flexible block classical Gram–Schmidt skeleton with reorthogonalization","authors":"Qinmeng Zou","doi":"10.1002/nla.2491","DOIUrl":null,"url":null,"abstract":"We investigate a variant of the reorthogonalized block classical Gram–Schmidt method for computing the QR factorization of a full column rank matrix. Our aim is to bound the loss of orthogonality even when the first local QR algorithm is only conditionally stable. In particular, this allows the use of modified Gram–Schmidt instead of Householder transformations as the first local QR algorithm. Numerical experiments confirm the stable behavior of the new variant. We also examine the use of non‐QR local factorization and show by example that the resulting variants, although less stable, may also be applied to ill‐conditioned problems.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2491","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a variant of the reorthogonalized block classical Gram–Schmidt method for computing the QR factorization of a full column rank matrix. Our aim is to bound the loss of orthogonality even when the first local QR algorithm is only conditionally stable. In particular, this allows the use of modified Gram–Schmidt instead of Householder transformations as the first local QR algorithm. Numerical experiments confirm the stable behavior of the new variant. We also examine the use of non‐QR local factorization and show by example that the resulting variants, although less stable, may also be applied to ill‐conditioned problems.
具有重正交化的柔性块经典Gram-Schmidt骨架
我们研究了重新正交块经典Gram–Schmidt方法的一个变体,用于计算全列秩矩阵的QR因子分解。我们的目标是限制正交性的损失,即使当第一个局部QR算法仅条件稳定时也是如此。特别是,这允许使用修改的Gram–Schmidt而不是Householder变换作为第一个局部QR算法。数值实验证实了新变体的稳定行为。我们还研究了非QR局部因子分解的使用,并通过例子表明,所产生的变体虽然不太稳定,但也可以应用于病态问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信