{"title":"A flexible block classical Gram–Schmidt skeleton with reorthogonalization","authors":"Qinmeng Zou","doi":"10.1002/nla.2491","DOIUrl":null,"url":null,"abstract":"We investigate a variant of the reorthogonalized block classical Gram–Schmidt method for computing the QR factorization of a full column rank matrix. Our aim is to bound the loss of orthogonality even when the first local QR algorithm is only conditionally stable. In particular, this allows the use of modified Gram–Schmidt instead of Householder transformations as the first local QR algorithm. Numerical experiments confirm the stable behavior of the new variant. We also examine the use of non‐QR local factorization and show by example that the resulting variants, although less stable, may also be applied to ill‐conditioned problems.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2491","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate a variant of the reorthogonalized block classical Gram–Schmidt method for computing the QR factorization of a full column rank matrix. Our aim is to bound the loss of orthogonality even when the first local QR algorithm is only conditionally stable. In particular, this allows the use of modified Gram–Schmidt instead of Householder transformations as the first local QR algorithm. Numerical experiments confirm the stable behavior of the new variant. We also examine the use of non‐QR local factorization and show by example that the resulting variants, although less stable, may also be applied to ill‐conditioned problems.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.