On determinants, inverses, norms, and spread of skew circulant matrices involving the product of Pell and Pell-Lucas numbers

IF 2 Q1 MATHEMATICS
Q. Fan, Y. Wei, Y. Zheng, Z. Jiang
{"title":"On determinants, inverses, norms, and spread of skew circulant matrices involving the product of Pell and Pell-Lucas numbers","authors":"Q. Fan, Y. Wei, Y. Zheng, Z. Jiang","doi":"10.22436/jmcs.031.02.08","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss skew circulant matrices involving the product of Pell and Pell-Lucas numbers. The invertibility of the skew circulant matrices is investigated, while the fundamental theorems on the determinants and inverses of such matrices are derived by simple construction matrices. Specifically, the determinant and inverse of n × n skew circulant matrices can be expressed by the ( n − 1 ) th, n th, ( n + 1 ) th, ( n + 2 ) th product of Pell and Pell-Lucas numbers. Some norms and bounds for spread of these matrices are given, respectively. In addition, we generalized these results to skew left circulant matrix involving the product of Pell and Pell-Lucas numbers. Finally, several numerical examples are illustrated to show the effectiveness of our theoretical results.","PeriodicalId":45497,"journal":{"name":"Journal of Mathematics and Computer Science-JMCS","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Computer Science-JMCS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jmcs.031.02.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we discuss skew circulant matrices involving the product of Pell and Pell-Lucas numbers. The invertibility of the skew circulant matrices is investigated, while the fundamental theorems on the determinants and inverses of such matrices are derived by simple construction matrices. Specifically, the determinant and inverse of n × n skew circulant matrices can be expressed by the ( n − 1 ) th, n th, ( n + 1 ) th, ( n + 2 ) th product of Pell and Pell-Lucas numbers. Some norms and bounds for spread of these matrices are given, respectively. In addition, we generalized these results to skew left circulant matrix involving the product of Pell and Pell-Lucas numbers. Finally, several numerical examples are illustrated to show the effectiveness of our theoretical results.
关于涉及Pell数和Pell- lucas数积的偏循环矩阵的行列式、逆、范数和扩展
本文讨论了涉及Pell数和Pell- lucas数积的偏循环矩阵。摘要研究了斜循环矩阵的可逆性,用简单构造矩阵推导了斜循环矩阵的行列式和逆矩阵的基本定理。具体来说,n × n偏循环矩阵的行列式和逆矩阵可以用Pell数和Pell- lucas数的(n−1)次、n次、(n + 1)次、(n + 2)次乘积表示。分别给出了这些矩阵的扩展的一些范数和界。此外,我们将这些结果推广到包含Pell数和Pell- lucas数积的偏左循环矩阵。最后,通过数值算例说明了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
4.00%
发文量
77
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信