A Global Poincaré inequality on Graphs via a Conical Curvature-Dimension Condition

IF 0.9 3区 数学 Q2 MATHEMATICS
Sajjad Lakzian, Zachary Mcguirk
{"title":"A Global Poincaré inequality on Graphs via a Conical Curvature-Dimension Condition","authors":"Sajjad Lakzian, Zachary Mcguirk","doi":"10.1515/agms-2018-0002","DOIUrl":null,"url":null,"abstract":"Abstract We introduce and study the conical curvature-dimension condition, CCD(K, N), for finite graphs.We show that CCD(K, N) provides necessary and sufficient conditions for the underlying graph to satisfy a sharp global Poincaré inequality which in turn translates to a sharp lower bound for the first eigenvalues of these graphs. Another application of the conical curvature-dimension analysis is finding a sharp estimate on the curvature of complete graphs","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"6 1","pages":"32 - 47"},"PeriodicalIF":0.9000,"publicationDate":"2018-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2018-0002","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2018-0002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract We introduce and study the conical curvature-dimension condition, CCD(K, N), for finite graphs.We show that CCD(K, N) provides necessary and sufficient conditions for the underlying graph to satisfy a sharp global Poincaré inequality which in turn translates to a sharp lower bound for the first eigenvalues of these graphs. Another application of the conical curvature-dimension analysis is finding a sharp estimate on the curvature of complete graphs
基于圆锥曲率维数条件的图上的全局Poincaré不等式
摘要引入并研究了有限图的圆锥曲率维条件CCD(K, N)。我们证明了CCD(K, N)为底层图满足尖锐全局poincarcarve不等式提供了充分必要条件,该不等式转化为这些图的第一特征值的尖锐下界。圆锥曲率维数分析的另一个应用是找到完全图曲率的一个尖锐估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信