Recent developments of anti-plasticized membranes for aggressive CO2 separation

IF 9.1 Q1 ENGINEERING, CHEMICAL
Yongchao Sun , Xiaoyu Wang , Xiangcun Li , Wu Xiao , Yan Dai , Canghai Ma , Gaohong He
{"title":"Recent developments of anti-plasticized membranes for aggressive CO2 separation","authors":"Yongchao Sun ,&nbsp;Xiaoyu Wang ,&nbsp;Xiangcun Li ,&nbsp;Wu Xiao ,&nbsp;Yan Dai ,&nbsp;Canghai Ma ,&nbsp;Gaohong He","doi":"10.1016/j.gce.2022.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Membrane separation technology provides an effective alternative to mitigate the massive carbon emission with high carbon capture productivity and efficiency. In the context of operating membranes under high CO<sub>2</sub> pressures allows increased separation productivity and reduced gas compression cost, which, however, often leads to CO<sub>2</sub> induced plasticization, a key hurdle for current gas separation membranes. In this review, we reviewed the latest development of membranes with anti-plasticization resistance, potentially suited for operation under high CO<sub>2</sub> feed streams. Specifically, the separation performance of polymeric membranes, inorganic membranes, and mixed matrix membranes under high CO<sub>2</sub> feed pressures are discussed. Approaches to enhance CO<sub>2</sub> induced plasticization of those membranes are also summarized. We conclude the recent progress of membranes for high CO<sub>2</sub> pressures with perspectives and an outlook for future development.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 1","pages":"Pages 1-16"},"PeriodicalIF":9.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952822000711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 4

Abstract

Membrane separation technology provides an effective alternative to mitigate the massive carbon emission with high carbon capture productivity and efficiency. In the context of operating membranes under high CO2 pressures allows increased separation productivity and reduced gas compression cost, which, however, often leads to CO2 induced plasticization, a key hurdle for current gas separation membranes. In this review, we reviewed the latest development of membranes with anti-plasticization resistance, potentially suited for operation under high CO2 feed streams. Specifically, the separation performance of polymeric membranes, inorganic membranes, and mixed matrix membranes under high CO2 feed pressures are discussed. Approaches to enhance CO2 induced plasticization of those membranes are also summarized. We conclude the recent progress of membranes for high CO2 pressures with perspectives and an outlook for future development.

Abstract Image

抗增塑膜在侵略性CO2分离中的最新进展
膜分离技术为减少大规模碳排放提供了一种有效的替代方案,具有较高的碳捕获生产率和效率。在高CO2压力下操作膜的情况下,允许提高分离生产率和降低气体压缩成本,然而,这通常导致CO2诱导的塑化,这是当前气体分离膜的关键障碍。在这篇综述中,我们回顾了具有抗塑化性能的膜的最新发展,该膜可能适用于在高CO2进料流下操作。具体地,讨论了聚合物膜、无机膜和混合基质膜在高CO2进料压力下的分离性能。还总结了增强这些膜的CO2诱导塑化的方法。我们总结了用于高CO2压力的膜的最新进展,并对未来的发展前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信