Estimation R=Pr(Y>X) for a Family of Lifetime Distributions by Transformation Method

Pub Date : 2021-08-23 DOI:10.13052/JRSS0974-8024.1422
Surinder Kumar, P. Gautam
{"title":"Estimation R=Pr(Y>X) for a Family of Lifetime Distributions by Transformation Method","authors":"Surinder Kumar, P. Gautam","doi":"10.13052/JRSS0974-8024.1422","DOIUrl":null,"url":null,"abstract":"For a Family of lifetime distributions proposed by Chaturvedi and Singh (2008) [6]. The problem of estimating R(t) = P(X > t), which is dened as the probability that a system survives until time t and R = P(Y > X), which represents the stress-strength model are revisited. In order to obtain the maximum likelihood estimators (MLE'S), uniformly minimum variance unbiased estimators (UMVUS'S), interval estimators and the Bayes estimators for the considered model. The technique of transformation method is used.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/JRSS0974-8024.1422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a Family of lifetime distributions proposed by Chaturvedi and Singh (2008) [6]. The problem of estimating R(t) = P(X > t), which is dened as the probability that a system survives until time t and R = P(Y > X), which represents the stress-strength model are revisited. In order to obtain the maximum likelihood estimators (MLE'S), uniformly minimum variance unbiased estimators (UMVUS'S), interval estimators and the Bayes estimators for the considered model. The technique of transformation method is used.
分享
查看原文
用变换法估计一类寿命分布的R=Pr(Y>X)
对于Chaturvedi和Singh(2008)提出的终身分布族[j]。重新研究了估计R(t) = P(X > t)的问题,即系统存活到时间t和R = P(Y > X)的概率,这代表了应力-强度模型。为了得到所考虑模型的极大似然估计量(MLE’s)、一致最小方差无偏估计量(UMVUS’s)、区间估计量和贝叶斯估计量。采用了变换法技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信